1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
// Copyright 2018 Global Phasing Ltd.
// Microbenchmark of gemmi::UnitCell::find_nearest_image().
#include "gemmi/model.hpp"
#include "gemmi/pdb.hpp"
#include "gemmi/calculate.hpp"
#include "gemmi/neighbor.hpp"
#include "gemmi/select.hpp" // count_atom_sites
#include "gemmi/remarks.hpp" // read_metadata_from_remarks
#include <benchmark/benchmark.h>
static const char* path;
static void read_pdb_file(benchmark::State& state) {
for (auto _ : state) {
gemmi::Structure st = gemmi::read_pdb_file(path);
benchmark::DoNotOptimize(st);
}
}
static void read_pdb_remarks(benchmark::State& state) {
using namespace gemmi;
Structure st = read_pdb_file(path);
for (auto _ : state) {
st.meta = gemmi::Metadata();
read_metadata_from_remarks(st);
benchmark::DoNotOptimize(st.meta);
}
}
static void find_atom_image(benchmark::State& state) {
using namespace gemmi;
Structure st = read_pdb_file(path);
const Model& model = st.models[0];
Position ref = model.chains.at(0).residues.at(0).atoms.at(0).pos;
for (auto _ : state) {
double sum_dist = 0;
for (const Chain& ch1 : model.chains)
for (const Residue& res1 : ch1.residues)
for (const Atom& a1 : res1.atoms) {
NearestImage im = st.cell.find_nearest_image(ref, a1.pos, Asu::Any);
sum_dist += im.dist_sq;
}
benchmark::DoNotOptimize(sum_dist);
}
}
static void neighbor_search_ctor(benchmark::State& state) {
using namespace gemmi;
Structure st = read_pdb_file(path);
for (auto _ : state) {
NeighborSearch ns(st.models.at(0), st.cell, 5.0);
benchmark::DoNotOptimize(ns);
}
}
static void neighbor_search_find(benchmark::State& state) {
using namespace gemmi;
Structure st = read_pdb_file(path);
const Model& model = st.models[0];
Position ref = model.chains.at(0).residues.at(2).atoms.at(0).pos;
NeighborSearch ns(st.models.at(0), st.cell, 5.0);
for (auto _ : state) {
auto r = ns.find_atoms(ref, '\0', 0, 4);
benchmark::DoNotOptimize(r);
}
}
static void neighbor_search_for_each(benchmark::State& state) {
using namespace gemmi;
Structure st = read_pdb_file(path);
const Model& model = st.models[0];
Position ref = model.chains.at(0).residues.at(2).atoms.at(0).pos;
NeighborSearch ns(st.models.at(0), st.cell, 5.0);
for (auto _ : state) {
double sum = 0;
ns.for_each(ref, '\0', 4,
[&sum](NeighborSearch::Mark&, double d) { sum += d; });
benchmark::DoNotOptimize(sum);
}
}
static void calculate_box(benchmark::State& state) {
using namespace gemmi;
Structure st = read_pdb_file(path);
for (auto _ : state) {
Box<Position> box = calculate_box(st);
benchmark::DoNotOptimize(box);
}
}
static void fractional_box(benchmark::State& state) {
using namespace gemmi;
Structure st = read_pdb_file(path);
for (auto _ : state) {
Box<Fractional> box = calculate_fractional_box(st);
benchmark::DoNotOptimize(box);
}
}
static bool has_hydrogen_with_levels(const gemmi::Structure& st) {
for (const gemmi::Model& model : st.models)
for (const gemmi::Chain& chain : model.chains)
for (const gemmi::Residue& res : chain.residues)
for (const gemmi::Atom& atom : res.atoms)
if (atom.is_hydrogen())
return true;
return false;
}
static bool has_hydrogen_with_cra(const gemmi::Structure& st) {
for (const gemmi::Model& model : st.models)
for (gemmi::const_CRA cra : model.all())
if (cra.atom->is_hydrogen())
return true;
return false;
}
static bool has_hydrogen_with_selection(const gemmi::Structure& st) {
gemmi::Selection sel("[H,D]");
return count_atom_sites(st, &sel) != 0;
}
static void has_hydrogen1(benchmark::State& state) {
using namespace gemmi;
Structure st = read_pdb_file(path);
for (auto _ : state) {
bool has_hydr = has_hydrogen_with_levels(st);
benchmark::DoNotOptimize(has_hydr);
}
}
static void has_hydrogen2(benchmark::State& state) {
using namespace gemmi;
Structure st = read_pdb_file(path);
for (auto _ : state) {
bool has_hydr = has_hydrogen_with_cra(st);
benchmark::DoNotOptimize(has_hydr);
}
}
static void has_hydrogen3(benchmark::State& state) {
using namespace gemmi;
Structure st = read_pdb_file(path);
for (auto _ : state) {
bool has_hydr = has_hydrogen_with_selection(st);
benchmark::DoNotOptimize(has_hydr);
}
}
int main(int argc, char** argv) {
if (argc < 2) {
printf("Call it with path to a pdb file as an argument.\n");
return 1;
}
path = argv[argc-1];
{
gemmi::Structure st = gemmi::read_pdb_file(path);
printf("PDB file: %s with %zu atom sites.\n",
st.name.c_str(), count_atom_sites(st.models.at(0)));
}
benchmark::RegisterBenchmark("read_pdb_file", read_pdb_file);
benchmark::RegisterBenchmark("read_pdb_remarks", read_pdb_remarks);
benchmark::RegisterBenchmark("find_atom_image", find_atom_image);
benchmark::RegisterBenchmark("neighbor_search_ctor", neighbor_search_ctor);
benchmark::RegisterBenchmark("neighbor_search_find", neighbor_search_find);
benchmark::RegisterBenchmark("neighbor_search_for_each",
neighbor_search_for_each);
benchmark::RegisterBenchmark("calculate_box", calculate_box);
benchmark::RegisterBenchmark("fractional_box", fractional_box);
benchmark::RegisterBenchmark("has_hydrogen1", has_hydrogen1);
benchmark::RegisterBenchmark("has_hydrogen2", has_hydrogen2);
benchmark::RegisterBenchmark("has_hydrogen3", has_hydrogen3);
benchmark::Initialize(&argc, argv);
benchmark::RunSpecifiedBenchmarks();
}
/* Output from my desktop:
*/
|