1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
// Copyright 2017 Global Phasing Ltd.
//
// This program analyses PDB or mmCIF files, printing similar things
// as CCP4 RWCONTENTS: weight, Matthews coefficient, etc.
#include <cassert>
#include <cstdio>
#include <gemmi/symmetry.hpp>
#include <gemmi/resinfo.hpp>
#include <gemmi/polyheur.hpp> // for setup_entities
#include <gemmi/seqtools.hpp> // for calculate_sequence_weight
#include <gemmi/mmread_gz.hpp> // for read_structure_gz
#include <gemmi/select.hpp> // for Selection
#include <gemmi/stats.hpp> // for DataStats
#include <gemmi/calculate.hpp> // for expand_box, calculate_omega
#include "histogram.h" // for print_histogram
#define GEMMI_PROG contents
#include "options.h"
using namespace gemmi;
using std::printf;
namespace {
enum OptionIndex { Select=4, Bfactors, Dihedrals, NoContentInfo };
const option::Descriptor Usage[] = {
{ NoOp, 0, "", "", Arg::None,
"Usage:\n " EXE_NAME " [options] INPUT[...]"
"\nAnalyses content of a PDB or mmCIF."},
CommonUsage[Help],
CommonUsage[Version],
CommonUsage[Verbose],
{ Select, 0, "", "select", Arg::Required,
" --select=SEL \tUse only the selection." },
{ Bfactors, 0, "b", "", Arg::None,
" -b \tPrint statistics of isotropic ADPs (B-factors)." },
{ Dihedrals, 0, "", "dihedrals", Arg::None,
" --dihedrals \tPrint peptide dihedral angles." },
{ NoContentInfo, 0, "n", "", Arg::None,
" -n \tDo not print content (for use with other options)." },
{ 0, 0, 0, 0, 0, 0 }
};
void print_atoms_on_special_positions(const Structure& st) {
printf(" Atoms on special positions:");
bool found = false;
for (const Chain& chain : st.first_model().chains)
for (const Residue& res : chain.residues)
for (const Atom& atom : res.atoms)
if (int n = st.cell.is_special_position(atom.pos)) {
found = true;
NearestImage im = st.cell.find_nearest_image(atom.pos, atom.pos,
Asu::Different);
printf("\n %s %4d%c %3s %-3s %c fold=%d occ=%.2f d_image=%.4f",
chain.name.c_str(), *res.seqid.num, res.seqid.icode,
res.name.c_str(), atom.name.c_str(), (atom.altloc | 0x20),
n+1, atom.occ, im.dist());
}
if (!found)
printf(" none");
printf("\n");
}
void print_solvent_content(const UnitCell& cell, double mol_weight) {
if (cell.is_crystal()) {
double Vm = cell.volume_per_image() / mol_weight;
printf(" Matthews coefficient: %29.3f\n", Vm);
double Na = 0.602214; // Avogadro number x 10^-24 (cm^3->A^3)
// rwcontents uses 1.34, Rupp's papers 1.35
for (double ro : { 1.35, 1.34 })
printf(" Solvent %% (for protein density %g): %13.3f\n",
ro, 100. * (1. - 1. / (ro * Vm * Na)));
} else {
printf(" Not a crystal / unit cell not known.\n");
}
}
void print_content_info(const Structure& st, bool /*verbose*/) {
printf(" Spacegroup %s\n", st.spacegroup_hm.c_str());
const Model& model = st.first_model();
int order = 1;
if (st.cell.is_crystal()) {
if (const SpaceGroup* sg = st.find_spacegroup()) {
order = sg->operations().order();
printf(" Group no. %d with %d operations.\n", sg->number, order);
} else {
std::fprintf(stderr, "%s space group name! Assuming P1.\n",
st.spacegroup_hm.empty() ? "No" : "Unrecognized");
}
} else {
printf(" Not a crystal.\n");
Box<Position> box;
expand_box(model, box);
printf(" Atoms in: x [%g, %g] y [%g, %g] z [%g, %g]\n",
box.minimum.x, box.maximum.x,
box.minimum.y, box.maximum.y,
box.minimum.z, box.maximum.z);
if (st.ncs_not_expanded()) {
for (const NcsOp& ncs_op : st.ncs) {
if (!ncs_op.given)
for (const_CRA cra : model.all())
box.extend(ncs_op.apply(cra.atom->pos));
}
printf(" With NCS: x [%g, %g] y [%g, %g] z [%g, %g]\n",
box.minimum.x, box.maximum.x,
box.minimum.y, box.maximum.y,
box.minimum.z, box.maximum.z);
}
}
if (!st.origx.is_identity())
printf(" The ORIGX matrix is not identity.\n");
if (st.cell.explicit_matrices)
printf(" Non-standard fractionalization matrix is given.\n");
if (st.cell.is_crystal())
print_atoms_on_special_positions(st);
double n_molecules = order * st.get_ncs_multiplier();
printf(" Number of images (symmetry * strict NCS): %5g\n", n_molecules);
assert(n_molecules == st.cell.images.size() + 1);
if (st.cell.is_crystal()) {
printf(" Cell volume [A^3]: %30.1f\n", st.cell.volume);
printf(" ASU volume [A^3]: %30.1f\n", st.cell.volume / order);
}
double water_count = 0;
int residue_count = 0;
int mol_h_count = 0;
double mol_weight = 0;
double mol_atom_count = 0;
double buffer_atom_count = 0;
double file_h_count = 0;
for (const Chain& chain : model.chains) {
for (const Residue& res : chain.residues) {
ResidueInfo res_info = find_tabulated_residue(res.name);
bool is_buffer = res_info.is_buffer_or_water();
if (!is_buffer && chain.is_first_in_group(res)) {
residue_count++;
mol_h_count += std::max(res_info.hydrogen_count - 2, 0);
}
for (const Atom& atom : res.atoms) {
if (atom.is_hydrogen()) {
file_h_count += atom.occ;
} else if (is_buffer) {
if (res_info.is_water())
water_count += atom.occ;
buffer_atom_count += atom.occ;
} else {
mol_atom_count += atom.occ;
mol_weight += atom.occ * atom.element.weight();
}
// sanity check: occupancies
if (atom.occ > 1.0f || atom.occ < 0.f)
printf("WARNING: Occupancy of %s: %g\n",
atom_str(chain, res, atom).c_str(), atom.occ);
if (atom.altloc && (&atom == &res.atoms[0] || (&atom - 1)->name != atom.name)) {
float occ_sum = atom.occ;
for (const Atom* a = &atom + 1; a < res.atoms.data() + res.atoms.size(); ++a)
if (a->name == atom.name)
occ_sum += a->occ;
if (occ_sum > 1.0f)
printf("WARNING: Sum of altloc occupancies of %s/%s %s/%s: %g\n",
chain.name.c_str(), res.name.c_str(), res.seqid.str().c_str(),
atom.name.c_str(), occ_sum);
}
}
}
}
// add weight of hydrogens
mol_weight += mol_h_count * Element(El::H).weight();
printf(" Residue count excl. solvent and buffer: %7d\n", residue_count);
printf(" Water count: %38.3f\n", water_count);
printf(" Heavy (not H) atom count: %25.3f\n",
mol_atom_count + buffer_atom_count);
printf(" in macromolecules and ligands: %16.3f\n", mol_atom_count);
printf(" in solvent and buffer: %24.3f\n", buffer_atom_count);
printf(" Hydrogens in the file: %28.3f\n", file_h_count);
printf("Solvent content based on the model (excl. solvent and buffer)\n");
printf(" Estimated hydrogen count: %21d\n", mol_h_count);
printf(" Estimated molecular weight: %23.3f\n", mol_weight);
print_solvent_content(st.cell, mol_weight);
printf("Solvent content based on SEQRES\n");
mol_weight = 0.;
bool missing = false;
for (const Chain& chain : model.chains)
if (ConstResidueSpan polymer = chain.get_polymer()) {
const Entity* entity = st.get_entity_of(polymer);
if (entity && !entity->full_sequence.empty()) {
mol_weight += calculate_sequence_weight(entity->full_sequence, 100.);
} else {
printf(" Missing sequence for chain %s.\n", chain.name.c_str());
missing = true;
}
}
if (missing)
return;
printf(" Molecular weight from sequence: %19.3f\n", mol_weight);
print_solvent_content(st.cell, mol_weight);
}
void print_dihedrals(const Structure& st) {
printf(" Chain Residue Psi Phi Omega\n");
const Model& model = st.first_model();
for (const Chain& chain : model.chains) {
for (const Residue& res : chain.residues) {
printf("%3s %4d%c %5s", chain.name.c_str(), *res.seqid.num,
res.seqid.icode, res.name.c_str());
const Residue* prev = chain.previous_residue(res);
if (!are_connected(*prev, res, PolymerType::PeptideL))
prev = nullptr;
const Residue* next = chain.next_residue(res);
if (!are_connected(res, *next, PolymerType::PeptideL))
next = nullptr;
double omega = next ? calculate_omega(res, *next) : NAN;
auto phi_psi = calculate_phi_psi(prev, res, next);
if (prev || next)
printf(" % 8.2f % 8.2f % 8.2f\n",
deg(phi_psi[0]), deg(phi_psi[1]), deg(omega));
else
printf("\n");
}
}
printf("\n");
}
void print_bfactor_info(const gemmi::Model& model) {
std::vector<double> bfactors;
for (const Chain& chain : model.chains)
for (const Residue& res : chain.residues)
for (const Atom& atom : res.atoms)
if (atom.occ > 0)
bfactors.push_back(atom.b_iso);
gemmi::DataStats stats = gemmi::calculate_data_statistics(bfactors);
printf("\nIsotropic ADPs: %zu values\n", bfactors.size());
printf(" min: %.2f max: %.2f mean: %.2f std.dev: %.2f\n",
stats.dmin, stats.dmax, stats.dmean, stats.rms);
if (stats.dmin < stats.dmax)
print_histogram(bfactors, stats.dmin, stats.dmax);
}
} // anonymous namespace
int GEMMI_MAIN(int argc, char **argv) {
OptParser p(EXE_NAME);
p.simple_parse(argc, argv, Usage);
p.require_input_files_as_args();
bool verbose = p.options[Verbose];
try {
for (int i = 0; i < p.nonOptionsCount(); ++i) {
std::string input = p.coordinate_input_file(i);
if (i > 0)
std::printf("\n");
if (verbose || p.nonOptionsCount() > 1)
std::printf("File: %s\n", input.c_str());
Structure st = read_structure_gz(input);
setup_entities(st);
if (p.options[Select])
gemmi::Selection(p.options[Select].arg).remove_not_selected(st);
if (st.models.size() > 1)
std::fprintf(stderr,
"Warning: using only the first model out of %zu.\n",
st.models.size());
if (!p.options[NoContentInfo])
print_content_info(st, verbose);
if (p.options[Bfactors])
print_bfactor_info(st.first_model());
if (p.options[Dihedrals])
print_dihedrals(st);
}
} catch (std::runtime_error& e) {
std::fprintf(stderr, "ERROR: %s\n", e.what());
return 1;
}
return 0;
}
|