File: contents.cpp

package info (click to toggle)
gemmi 0.6.5%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 5,836 kB
  • sloc: cpp: 54,719; python: 4,743; ansic: 3,972; sh: 384; makefile: 73; f90: 42; javascript: 12
file content (275 lines) | stat: -rw-r--r-- 10,512 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// Copyright 2017 Global Phasing Ltd.
//
// This program analyses PDB or mmCIF files, printing similar things
// as CCP4 RWCONTENTS: weight, Matthews coefficient, etc.

#include <cassert>
#include <cstdio>
#include <gemmi/symmetry.hpp>
#include <gemmi/resinfo.hpp>
#include <gemmi/polyheur.hpp>  // for setup_entities
#include <gemmi/seqtools.hpp>  // for calculate_sequence_weight
#include <gemmi/mmread_gz.hpp> // for read_structure_gz
#include <gemmi/select.hpp>    // for Selection
#include <gemmi/stats.hpp>     // for DataStats
#include <gemmi/calculate.hpp> // for expand_box, calculate_omega
#include "histogram.h"         // for print_histogram
#define GEMMI_PROG contents
#include "options.h"

using namespace gemmi;
using std::printf;

namespace {

enum OptionIndex { Select=4, Bfactors, Dihedrals, NoContentInfo };

const option::Descriptor Usage[] = {
  { NoOp, 0, "", "", Arg::None,
    "Usage:\n " EXE_NAME " [options] INPUT[...]"
    "\nAnalyses content of a PDB or mmCIF."},
  CommonUsage[Help],
  CommonUsage[Version],
  CommonUsage[Verbose],
  { Select, 0, "", "select", Arg::Required,
    "  --select=SEL  \tUse only the selection." },
  { Bfactors, 0, "b", "", Arg::None,
    "  -b  \tPrint statistics of isotropic ADPs (B-factors)." },
  { Dihedrals, 0, "", "dihedrals", Arg::None,
    "  --dihedrals  \tPrint peptide dihedral angles." },
  { NoContentInfo, 0, "n", "", Arg::None,
    "  -n  \tDo not print content (for use with other options)." },
  { 0, 0, 0, 0, 0, 0 }
};

void print_atoms_on_special_positions(const Structure& st) {
  printf(" Atoms on special positions:");
  bool found = false;
  for (const Chain& chain : st.first_model().chains)
    for (const Residue& res : chain.residues)
      for (const Atom& atom : res.atoms)
        if (int n = st.cell.is_special_position(atom.pos)) {
          found = true;
          NearestImage im = st.cell.find_nearest_image(atom.pos, atom.pos,
                                                       Asu::Different);
          printf("\n    %s %4d%c %3s %-3s %c fold=%d  occ=%.2f  d_image=%.4f",
                 chain.name.c_str(), *res.seqid.num, res.seqid.icode,
                 res.name.c_str(), atom.name.c_str(), (atom.altloc | 0x20),
                 n+1, atom.occ, im.dist());
        }
  if (!found)
    printf(" none");
  printf("\n");
}

void print_solvent_content(const UnitCell& cell, double mol_weight) {
  if (cell.is_crystal()) {
    double Vm = cell.volume_per_image() / mol_weight;
    printf(" Matthews coefficient: %29.3f\n", Vm);
    double Na = 0.602214;  // Avogadro number x 10^-24 (cm^3->A^3)
    // rwcontents uses 1.34, Rupp's papers 1.35
    for (double ro : { 1.35, 1.34 })
      printf(" Solvent %% (for protein density %g): %13.3f\n",
             ro, 100. * (1. - 1. / (ro * Vm * Na)));
  } else {
    printf(" Not a crystal / unit cell not known.\n");
  }
}

void print_content_info(const Structure& st, bool /*verbose*/) {
  printf(" Spacegroup   %s\n", st.spacegroup_hm.c_str());
  const Model& model = st.first_model();
  int order = 1;
  if (st.cell.is_crystal()) {
    if (const SpaceGroup* sg = st.find_spacegroup()) {
      order = sg->operations().order();
      printf("   Group no. %d with %d operations.\n", sg->number, order);
    } else {
      std::fprintf(stderr, "%s space group name! Assuming P1.\n",
                   st.spacegroup_hm.empty() ? "No" : "Unrecognized");
    }
  } else {
    printf("   Not a crystal.\n");
    Box<Position> box;
    expand_box(model, box);
    printf("   Atoms in: x [%g, %g]  y [%g, %g]  z [%g, %g]\n",
           box.minimum.x, box.maximum.x,
           box.minimum.y, box.maximum.y,
           box.minimum.z, box.maximum.z);
    if (st.ncs_not_expanded()) {
      for (const NcsOp& ncs_op : st.ncs) {
        if (!ncs_op.given)
          for (const_CRA cra : model.all())
            box.extend(ncs_op.apply(cra.atom->pos));
      }
      printf("   With NCS: x [%g, %g]  y [%g, %g]  z [%g, %g]\n",
             box.minimum.x, box.maximum.x,
             box.minimum.y, box.maximum.y,
             box.minimum.z, box.maximum.z);
    }
  }
  if (!st.origx.is_identity())
    printf("   The ORIGX matrix is not identity.\n");
  if (st.cell.explicit_matrices)
    printf("   Non-standard fractionalization matrix is given.\n");
  if (st.cell.is_crystal())
    print_atoms_on_special_positions(st);
  double n_molecules = order * st.get_ncs_multiplier();
  printf(" Number of images (symmetry * strict NCS): %5g\n", n_molecules);
  assert(n_molecules == st.cell.images.size() + 1);
  if (st.cell.is_crystal()) {
    printf(" Cell volume [A^3]: %30.1f\n", st.cell.volume);
    printf(" ASU volume [A^3]:  %30.1f\n", st.cell.volume / order);
  }
  double water_count = 0;
  int residue_count = 0;
  int mol_h_count = 0;
  double mol_weight = 0;
  double mol_atom_count = 0;
  double buffer_atom_count = 0;
  double file_h_count = 0;
  for (const Chain& chain : model.chains) {
    for (const Residue& res : chain.residues) {
      ResidueInfo res_info = find_tabulated_residue(res.name);
      bool is_buffer = res_info.is_buffer_or_water();
      if (!is_buffer && chain.is_first_in_group(res)) {
        residue_count++;
        mol_h_count += std::max(res_info.hydrogen_count - 2, 0);
      }
      for (const Atom& atom : res.atoms) {
        if (atom.is_hydrogen()) {
          file_h_count += atom.occ;
        } else if (is_buffer) {
          if (res_info.is_water())
            water_count += atom.occ;
          buffer_atom_count += atom.occ;
        } else {
          mol_atom_count += atom.occ;
          mol_weight += atom.occ * atom.element.weight();
        }

        // sanity check: occupancies
        if (atom.occ > 1.0f || atom.occ < 0.f)
          printf("WARNING: Occupancy of %s: %g\n",
                 atom_str(chain, res, atom).c_str(), atom.occ);
        if (atom.altloc && (&atom == &res.atoms[0] || (&atom - 1)->name != atom.name)) {
          float occ_sum = atom.occ;
          for (const Atom* a = &atom + 1; a < res.atoms.data() + res.atoms.size(); ++a)
            if (a->name == atom.name)
              occ_sum += a->occ;
          if (occ_sum > 1.0f)
            printf("WARNING: Sum of altloc occupancies of %s/%s %s/%s: %g\n",
                   chain.name.c_str(), res.name.c_str(), res.seqid.str().c_str(),
                   atom.name.c_str(), occ_sum);
        }
      }
    }
  }
  // add weight of hydrogens
  mol_weight += mol_h_count * Element(El::H).weight();

  printf(" Residue count excl. solvent and buffer: %7d\n", residue_count);
  printf(" Water count: %38.3f\n", water_count);
  printf(" Heavy (not H) atom count: %25.3f\n",
         mol_atom_count + buffer_atom_count);
  printf("     in macromolecules and ligands: %16.3f\n", mol_atom_count);
  printf("     in solvent and buffer: %24.3f\n", buffer_atom_count);
  printf(" Hydrogens in the file: %28.3f\n", file_h_count);
  printf("Solvent content based on the model (excl. solvent and buffer)\n");
  printf(" Estimated hydrogen count: %21d\n", mol_h_count);
  printf(" Estimated molecular weight: %23.3f\n", mol_weight);
  print_solvent_content(st.cell, mol_weight);
  printf("Solvent content based on SEQRES\n");
  mol_weight = 0.;
  bool missing = false;
  for (const Chain& chain : model.chains)
    if (ConstResidueSpan polymer = chain.get_polymer()) {
      const Entity* entity = st.get_entity_of(polymer);
      if (entity && !entity->full_sequence.empty()) {
        mol_weight += calculate_sequence_weight(entity->full_sequence, 100.);
      } else {
        printf(" Missing sequence for chain %s.\n", chain.name.c_str());
        missing = true;
      }
    }
  if (missing)
    return;
  printf(" Molecular weight from sequence: %19.3f\n", mol_weight);
  print_solvent_content(st.cell, mol_weight);
}

void print_dihedrals(const Structure& st) {
  printf(" Chain Residue      Psi      Phi    Omega\n");
  const Model& model = st.first_model();
  for (const Chain& chain : model.chains) {
    for (const Residue& res : chain.residues) {
      printf("%3s %4d%c %5s", chain.name.c_str(), *res.seqid.num,
                              res.seqid.icode, res.name.c_str());
      const Residue* prev = chain.previous_residue(res);
      if (!are_connected(*prev, res, PolymerType::PeptideL))
        prev = nullptr;
      const Residue* next = chain.next_residue(res);
      if (!are_connected(res, *next, PolymerType::PeptideL))
        next = nullptr;
      double omega = next ? calculate_omega(res, *next) : NAN;
      auto phi_psi = calculate_phi_psi(prev, res, next);
      if (prev || next)
        printf(" % 8.2f % 8.2f % 8.2f\n",
               deg(phi_psi[0]), deg(phi_psi[1]), deg(omega));
      else
        printf("\n");
    }
  }
  printf("\n");
}

void print_bfactor_info(const gemmi::Model& model) {
  std::vector<double> bfactors;
  for (const Chain& chain : model.chains)
    for (const Residue& res : chain.residues)
      for (const Atom& atom : res.atoms)
        if (atom.occ > 0)
          bfactors.push_back(atom.b_iso);
  gemmi::DataStats stats = gemmi::calculate_data_statistics(bfactors);
  printf("\nIsotropic ADPs: %zu values\n", bfactors.size());
  printf("  min: %.2f  max: %.2f  mean: %.2f  std.dev: %.2f\n",
         stats.dmin, stats.dmax, stats.dmean, stats.rms);
  if (stats.dmin < stats.dmax)
    print_histogram(bfactors, stats.dmin, stats.dmax);
}

} // anonymous namespace

int GEMMI_MAIN(int argc, char **argv) {
  OptParser p(EXE_NAME);
  p.simple_parse(argc, argv, Usage);
  p.require_input_files_as_args();
  bool verbose = p.options[Verbose];
  try {
    for (int i = 0; i < p.nonOptionsCount(); ++i) {
      std::string input = p.coordinate_input_file(i);
      if (i > 0)
        std::printf("\n");
      if (verbose || p.nonOptionsCount() > 1)
        std::printf("File: %s\n", input.c_str());
      Structure st = read_structure_gz(input);
      setup_entities(st);
      if (p.options[Select])
        gemmi::Selection(p.options[Select].arg).remove_not_selected(st);
      if (st.models.size() > 1)
        std::fprintf(stderr,
                     "Warning: using only the first model out of %zu.\n",
                     st.models.size());
      if (!p.options[NoContentInfo])
        print_content_info(st, verbose);
      if (p.options[Bfactors])
        print_bfactor_info(st.first_model());
      if (p.options[Dihedrals])
        print_dihedrals(st);
    }
  } catch (std::runtime_error& e) {
    std::fprintf(stderr, "ERROR: %s\n", e.what());
    return 1;
  }
  return 0;
}