1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
// Copyright 2017 Global Phasing Ltd.
#include <cmath> // for floor
#include <cstdio> // for fprintf
#include <algorithm> // for nth_element, count_if
#include "gemmi/ccp4.hpp"
#include "gemmi/gz.hpp" // for MaybeGzipped
#include "gemmi/util.hpp" // for trim_str
#include "gemmi/symmetry.hpp"
#include "gemmi/floodfill.hpp" // for mask_points_above_threshold
#include "histogram.h" // for print_histogram
#define GEMMI_PROG map
#include "options.h"
namespace {
enum OptionIndex {
Dump=4, Deltas, CheckSym, Reorder, Full, Mask, Threshold, Fraction
};
const option::Descriptor Usage[] = {
{ NoOp, 0, "", "", Arg::None,
"Usage:\n " EXE_NAME " [options] CCP4_MAP[...]\n" },
CommonUsage[Help],
CommonUsage[Version],
CommonUsage[Verbose],
{ Dump, 0, "d", "dump", Arg::None,
" -d, --dump \tPrint a map summary (default action)." },
{ Deltas, 0, "", "deltas", Arg::None,
" --deltas \tStatistics of dx, dy and dz." },
{ CheckSym, 0, "", "check-symmetry", Arg::None,
" --check-symmetry \tCompare the values of symmetric points." },
{ Reorder, 0, "", "write-xyz", Arg::Required,
" --write-xyz=FILE \tWrite transposed map with fast X axis and slow Z." },
{ Full, 0, "", "write-full", Arg::Required,
" --write-full=FILE \tWrite map extended to cover whole unit cell." },
{ Mask, 0, "", "write-mask", Arg::Required,
" --write-mask=FILE \tMake a mask by thresholding the map." },
{ NoOp, 0, "", "", Arg::None, "\nOptions for making a mask:" },
{ Threshold, 0, "", "threshold", Arg::Float,
" --threshold \tExplicit threshold value for 0/1 mask." },
{ Fraction, 0, "", "fraction", Arg::Float,
" --fraction \tThreshold is selected to have this fraction of 1's." },
{ 0, 0, 0, 0, 0, 0 }
};
template<typename T>
void print_info(const gemmi::Ccp4<T>& map, const gemmi::DataStats& st) {
const gemmi::Grid<T>& grid = map.grid;
std::printf("Map mode: %d\n", map.header_i32(4));
std::printf("Endianness: %snative\n", map.same_byte_order ? "" : "NOT ");
std::printf("Number of columns, rows, sections: %5d %5d %5d %6s %d points\n",
grid.nu, grid.nv, grid.nw, "->", grid.nu * grid.nv * grid.nw);
int u0 = map.header_i32(5);
int v0 = map.header_i32(6);
int w0 = map.header_i32(7);
std::printf(" from: %5d %5d %5d\n", u0, v0, w0);
std::printf(" to: %5d %5d %5d\n",
u0 + grid.nu - 1, v0 + grid.nv - 1, w0 + grid.nw - 1);
std::printf("Fast, medium, slow axes: %c %c %c\n",
'X' + map.header_i32(17) - 1,
'X' + map.header_i32(18) - 1,
'X' + map.header_i32(19) - 1);
int mx = map.header_i32(8);
int my = map.header_i32(9);
int mz = map.header_i32(10);
std::printf("Grid sampling on x, y, z: %5d %5d %5d %12s %d points/cell\n",
mx, my, mz, "->", mx * my * mz);
const gemmi::UnitCell& cell = grid.unit_cell;
const gemmi::SpaceGroup* sg = grid.spacegroup;
std::printf("Space group: %d (%s)\n",
sg ? sg->ccp4 : 0, sg ? sg->hm : "unknown");
int order = sg ? sg->operations().order() : 1;
std::printf("SG order: %-3d %40s %d points/ASU\n",
order, "->", mx * my * mz / order);
std::printf("Cell dimensions: %g %g %g %g %g %g\n",
cell.a, cell.b, cell.c, cell.alpha, cell.beta, cell.gamma);
gemmi::Position origin = map.get_origin();
if (origin.x != 0 || origin.y != 0 || origin.z != 0)
std::printf("Non-zero origin: %g %g %g\n", origin.x, origin.y, origin.z);
if (map.has_skew_transformation())
std::printf("Defines skew transformation with translation length %.5g A.\n",
map.get_skew_transformation().vec.length());
if (st.nan_count != 0)
std::printf("\n*** Data includes NaNs: %zu of %zu points ***",
st.nan_count, grid.data.size());
std::printf("\nStatistics from HEADER and DATA\n");
std::printf("Minimum: %12.5f %12.5f\n", map.hstats.dmin, st.dmin);
std::printf("Maximum: %12.5f %12.5f\n", map.hstats.dmax, st.dmax);
std::printf("Mean: %12.5f %12.5f\n", map.hstats.dmean, st.dmean);
std::printf("RMS: %12.5f %12.5f\n", map.hstats.rms, st.rms);
std::vector<T> data = grid.data; // copy b/c nth_element() reorders data
if (st.nan_count != 0)
gemmi::vector_remove_if(data, [](T x) { return std::isnan(x); });
if (!data.empty()) {
size_t mpos = data.size() / 2;
std::nth_element(data.begin(), data.begin() + mpos, data.end());
std::printf("Median: %12.5f\n", data[mpos]);
bool mask = std::all_of(data.begin(), data.end(),
[&st](T x) { return x == st.dmin || x == st.dmax; });
double margin = mask ? 7 * (st.dmax - st.dmin) : 0;
print_histogram(data, st.dmin - margin, st.dmax + margin);
}
int nlabl = map.header_i32(56);
if (nlabl != 0)
std::printf("\n");
for (int i = 0; i < nlabl && i < 10; ++i) {
std::string label = gemmi::trim_str(map.header_str(57 + i * 20));
std::printf("Label #%d\n%s\n", i, label.c_str());
}
int nsymbt = map.header_i32(24);
if (nsymbt != 0) {
std::printf("\n");
std::vector<gemmi::Op> ops;
int bad_counter = 0;
for (int i = 0; i * 80 < nsymbt; i++) {
std::string symop = map.header_str(256 + i * 20 /*words not bytes*/, 80);
try {
gemmi::Op op = gemmi::parse_triplet(symop);
ops.push_back(op);
} catch (std::exception&) {
++bad_counter;
}
std::printf("Sym op #%d: %s\n", i + 1, gemmi::trim_str(symop).c_str());
}
if (bad_counter == 0) {
gemmi::GroupOps gops = gemmi::split_centering_vectors(ops);
const gemmi::SpaceGroup* sg2 = gemmi::find_spacegroup_by_ops(gops);
std::printf("Space group from the operators: ");
if (sg2)
std::printf("%d (%s)\n", sg2->ccp4, sg2->xhm().c_str());
else
std::printf("unknown\n");
if (sg2 && sg && sg != sg2)
std::printf("NOTE: different than from the ISPG header.\n");
} else {
std::printf("NOTE: %d of symmetry lines do not parse as operators.\n", bad_counter);
}
}
}
template<typename T>
void print_deltas(const gemmi::Grid<T>& grid, double dmin, double dmax) {
std::vector<double> deltas;
deltas.reserve(grid.data.size());
for (int i = 0; i < 3; ++i) {
int f[3] = {0, 0, 0};
f[i] = 1;
for (int w = f[2]; w < grid.nw; ++w)
for (int v = f[1]; v < grid.nv; ++v)
for (int u = f[0]; u < grid.nu; ++u)
deltas.push_back(grid.get_value_q(u, v, w) -
grid.get_value_q(u - f[0], v - f[1], w - f[2]));
gemmi::DataStats st = gemmi::calculate_data_statistics(deltas);
std::printf("\nd%c: min: %.5f max: %.5f mean: %.5f std.dev: %.5f\n",
"XYZ"[i], st.dmin, st.dmax, st.dmean, st.rms);
print_histogram(deltas, dmin, dmax);
deltas.clear();
}
}
} // anonymous namespace
int GEMMI_MAIN(int argc, char **argv) {
OptParser p(EXE_NAME);
p.simple_parse(argc, argv, Usage);
p.require_input_files_as_args();
p.check_exclusive_pair(Threshold, Fraction);
//bool verbose = p.options[Verbose];
if (p.nonOptionsCount() > 1 && (p.options[Reorder] || p.options[Full])) {
std::fprintf(stderr, "Option --write-... can be only used "
"with a single input file.\n");
return 1;
}
bool dump = (p.options[Dump] ||
!(p.options[Deltas] || p.options[CheckSym] ||
p.options[Reorder] || p.options[Full] || p.options[Mask]));
try {
for (int i = 0; i < p.nonOptionsCount(); ++i) {
const char* input = p.nonOption(i);
gemmi::Ccp4<> map;
if (i != 0)
std::printf("\n\n");
std::printf("Reading file: %s\n", input);
map.read_ccp4(gemmi::MaybeGzipped(input));
gemmi::DataStats stats = gemmi::calculate_data_statistics(map.grid.data);
if (dump)
print_info(map, stats);
if (p.options[Deltas])
print_deltas(map.grid, stats.dmin, stats.dmax);
if (p.options[Reorder]) {
map.setup(NAN, gemmi::MapSetup::ReorderOnly);
map.write_ccp4_map(p.options[Reorder].arg);
}
double max_err = 0.;
if (p.options[CheckSym]) {
const double eps = 0.01;
// this is equivalent to calling map.setup(Full), but additionally
// it prints inconsistent points.
map.setup(NAN, gemmi::MapSetup::NoSymmetry);
map.grid.symmetrize([&](float a, float b) {
if (a < b || a > b) {
double diff = std::fabs(a - b);
if (diff > eps)
std::printf("Symmetry-equivalent values differ: "
"%g != %g diff: %g\n", a, b, diff);
max_err = std::max(max_err, diff);
}
return std::isnan(a) ? b : a;
});
map.grid.calculate_spacing();
} else if (p.options[Full] || p.options[Mask]) {
map.setup(NAN, gemmi::MapSetup::Full);
}
if (p.options[Full]) {
size_t nn = std::count_if(map.grid.data.begin(), map.grid.data.end(),
[](float x) { return std::isnan(x); });
if (nn != 0)
std::fprintf(stderr, "WARNING: %zu unknown values set to NAN\n", nn);
map.write_ccp4_map(p.options[Full].arg);
}
if (p.options[Mask]) {
double threshold;
if (p.options[Threshold]) {
threshold = std::atof(p.options[Threshold].arg);
} else if (p.options[Fraction]) {
double fraction = std::atof(p.options[Fraction].arg);
if (fraction < 0. || fraction > 1.) {
std::fprintf(stderr, "Fraction must be between 0 and 1.\n");
return 2;
}
auto data = map.grid.data; // making a copy for nth_element()
size_t n = std::min(static_cast<size_t>(data.size() * (1.0 - fraction)),
data.size() - 1);
std::nth_element(data.begin(), data.begin() + n, data.end());
threshold = data[n];
} else {
std::fprintf(stderr, "ERROR: you need to use --threshold or --fraction.\n");
return 2;
}
gemmi::Ccp4<std::int8_t> mask;
gemmi::mask_nodes_above_threshold(mask.grid, map.grid, threshold);
size_t ones = std::count(mask.grid.data.begin(), mask.grid.data.end(), 1);
size_t all = mask.grid.data.size();
std::fprintf(stderr, "Masked %zu of %zu points (%.1f%%) above %g\n",
ones, all, 100.0 * ones / all, threshold);
mask.update_ccp4_header(0);
mask.write_ccp4_map(p.options[Mask].arg);
}
}
} catch (std::runtime_error& e) {
std::fprintf(stderr, "ERROR: %s\n", e.what());
return 1;
}
return 0;
}
|