1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
// Copyright 2017 Global Phasing Ltd.
#include <cstdio> // for printf, fprintf
#include <cstdlib> // for atof
#include "gemmi/ccp4.hpp"
#include "gemmi/solmask.hpp" // for SolventMasker
#include "gemmi/symmetry.hpp"
#include "gemmi/mmread_gz.hpp" // for read_structure_gz
#include "timer.h"
#define GEMMI_PROG mask
#include "options.h"
namespace {
enum OptionIndex {
Timing=4, GridSpac, GridDims, Radius, RProbe, RShrink,
IslandLimit, Hydrogens, AnyOccupancy, CctbxCompat, RefmacCompat, Invert
};
struct MaskArg {
static option::ArgStatus FileFormat(const option::Option& option, bool msg) {
return Arg::Choice(option, msg, {"coor", "map", "none"});
}
};
const option::Descriptor Usage[] = {
{ NoOp, 0, "", "", Arg::None,
"Usage:\n " EXE_NAME " [options] INPUT output.msk"
"\n\nMakes a bulk-solvent mask in the CCP4 format."
"\nINPUT is a coordinate file (mmCIF, PDB, etc)." },
CommonUsage[Help],
CommonUsage[Version],
CommonUsage[Verbose],
{ Timing, 0, "", "timing", Arg::None,
" --timing \tPrint how long individual steps take." },
{ GridSpac, 0, "s", "spacing", Arg::Float,
" -s, --spacing=D \tMax. sampling for the grid (default: 1A)." },
{ GridDims, 0, "g", "grid", Arg::Int3,
" -g, --grid=NX,NY,NZ \tGrid sampling." },
{ Radius, 0, "r", "radius", Arg::Float,
" -r, --radius=R \tUse constant radius of atom spheres." },
{ RProbe, 0, "", "r-probe", Arg::Float,
" --r-probe=Rp \tUse VdW radius + Rp (default: 1.0A)." },
{ RShrink, 0, "", "r-shrink", Arg::Float,
" --r-shrink=Rs \tFinally, remove a shell of thickness Rs (default: 1.1A)." },
{ IslandLimit, 0, "", "island-limit", Arg::Float,
" --island-limit=VOL \tRemove \"islands\" up to VOL A^3." },
{ Hydrogens, 0, "", "hydrogens", Arg::None,
" --hydrogens \tDon't ignore hydrogens." },
{ AnyOccupancy, 0, "", "any-occupancy", Arg::None,
" --any-occupancy \tDon't ignore zero-occupancy atoms." },
{ CctbxCompat, 0, "", "cctbx-compat", Arg::None,
" --cctbx-compat \tUse vdW, Rprobe, Rshrink radii from cctbx." },
{ RefmacCompat, 0, "", "refmac-compat", Arg::None,
" --refmac-compat \tUse radii compatible with Refmac." },
{ Invert, 0, "I", "invert", Arg::None,
" -I, --invert \t0 for solvent, 1 for molecule." },
{ 0, 0, 0, 0, 0, 0 }
};
} // anonymous namespace
int GEMMI_MAIN(int argc, char **argv) {
OptParser p(EXE_NAME);
p.simple_parse(argc, argv, Usage);
p.require_positional_args(2);
const char* input = p.nonOption(0);
const char* output = p.nonOption(1);
p.check_exclusive_pair(GridDims, GridSpac);
p.check_exclusive_pair(CctbxCompat, RefmacCompat);
p.check_exclusive_pair(Radius, RProbe);
p.check_exclusive_pair(Radius, CctbxCompat);
p.check_exclusive_pair(Radius, RefmacCompat);
if (p.options[Verbose])
std::fprintf(stderr, "Converting %s ...\n", input);
try {
using std::int8_t;
Timer timer(p.options[Timing]);
gemmi::Structure st = gemmi::read_structure_gz(input);
gemmi::Ccp4<int8_t> mask;
mask.grid.unit_cell = st.cell;
mask.grid.spacegroup = st.find_spacegroup();
if (p.options[GridDims]) {
auto dims = parse_comma_separated_ints(p.options[GridDims].arg);
mask.grid.set_size(dims[0], dims[1], dims[2]);
} else {
double spac = 1;
if (p.options[GridSpac])
spac = std::atof(p.options[GridSpac].arg);
mask.grid.set_size_from_spacing(spac, gemmi::GridSizeRounding::Up);
}
if (p.options[Verbose]) {
const auto& g = mask.grid;
std::fprintf(stderr, "Grid: %d x %d x %d\n", g.nu, g.nv, g.nw);
std::fprintf(stderr, "Spacing: %.3f, %.3f, %.3f\n",
g.spacing[0], g.spacing[1], g.spacing[2]);
size_t np = g.data.size();
double vol = st.cell.volume;
std::fprintf(stderr, "Total points: %zu\n", np);
std::fprintf(stderr, "Unit cell volume: %.1f A^3\n", vol);
std::fprintf(stderr, "Volume per point: %.3f A^3\n", vol / np);
if (g.spacegroup) {
std::fprintf(stderr, "Spacegroup: %s\n", g.spacegroup->hm);
int na = g.spacegroup->operations().order();
std::fprintf(stderr, "ASU volume: %.1f A^3\n", vol / na);
std::fprintf(stderr, "Points per ASU: %.1f\n", double(np) / na);
} else {
std::fprintf(stderr, "No spacegroup\n");
}
}
if (st.models.size() > 1)
std::fprintf(stderr, "Note: only the first model is used.\n");
gemmi::SolventMasker masker(gemmi::AtomicRadiiSet::VanDerWaals);
if (p.options[Radius])
masker.set_radii(gemmi::AtomicRadiiSet::Constant,
std::atof(p.options[Radius].arg));
else if (p.options[CctbxCompat])
masker.set_radii(gemmi::AtomicRadiiSet::Cctbx);
else if (p.options[RefmacCompat])
masker.set_radii(gemmi::AtomicRadiiSet::Refmac);
if (p.options[RProbe])
masker.rprobe = std::atof(p.options[RProbe].arg);
if (p.options[RShrink])
masker.rshrink = std::atof(p.options[RShrink].arg);
if (p.options[Hydrogens])
masker.ignore_hydrogen = false;
if (p.options[AnyOccupancy])
masker.ignore_zero_occupancy_atoms = false;
timer.start();
masker.clear(mask.grid);
masker.mask_points(mask.grid, st.models[0]);
timer.print("Points masked in");
timer.start();
masker.symmetrize(mask.grid);
timer.print("Mask symmetrized in");
if (masker.rshrink > 0) {
timer.start();
masker.shrink(mask.grid);
timer.print("Mask shrunken in");
}
if (p.options[IslandLimit])
masker.island_min_volume = std::atof(p.options[IslandLimit].arg);
if (masker.island_min_volume > 0.) {
timer.start();
int n = masker.remove_islands(mask.grid);
timer.print("Islands removed in");
if (p.options[Verbose])
std::fprintf(stderr, "Islands removed: %d\n", n);
}
if (p.options[Verbose]) {
size_t n = std::count(mask.grid.data.begin(), mask.grid.data.end(), 0);
std::fprintf(stderr, "Points masked by model: %zu\n", n);
}
if (p.options[Invert])
masker.invert(mask.grid);
mask.update_ccp4_header(0);
mask.write_ccp4_map(output);
} catch (std::runtime_error& e) {
std::fprintf(stderr, "ERROR: %s\n", e.what());
return 1;
}
return 0;
}
|