1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
// Copyright 2019 Global Phasing Ltd.
//
// Compare two CIF files with monomer restraints.
#include <stdio.h>
#include <cstdlib>
#include <set>
#include <gemmi/chemcomp.hpp> // for make_chemcomp_from_block
#include <gemmi/read_cif.hpp> // for read_cif_gz
#define GEMMI_PROG mondiff
#include "options.h"
using namespace gemmi;
namespace {
enum OptionIndex { Bond=4, BondEsd, Angle, AngleEsd, Relative };
const option::Descriptor Usage[] = {
{ NoOp, 0, "", "", Arg::None,
"Usage:"
"\n " EXE_NAME " [options] FILE1 FILE2"
"\nOptions:"},
CommonUsage[Help],
CommonUsage[Version],
CommonUsage[Verbose],
{ NoOp, 0, "", "", Arg::None, "\nMinimal reported differences:" },
{ Bond, 0, "", "bond", Arg::Float,
" --bond=DELTA \tdifference in distance value (default: 0.01)." },
{ BondEsd, 0, "", "bond-esd", Arg::Float,
" --bond-esd=DELTA \tdifference in distance esd (default: 0.1)." },
{ Angle, 0, "", "angle", Arg::Float,
" --angle=DELTA \tdifference in angle value (default: 0.1)." },
{ AngleEsd, 0, "", "angle-esd", Arg::Float,
" --angle-esd=DELTA \tdifference in angle esd (default: 1.0)." },
{ Relative, 0, "", "rel", Arg::Float,
" --rel=SIGMA \t abs(value difference) / esd > SIGMA (default: 0.0)." },
{ 0, 0, 0, 0, 0, 0 }
};
struct MinDelta {
double bond = 0.01;
double bond_esd = 0.1;
double angle = 0.1;
double angle_esd = 1.0;
double rel = 0.0;
};
std::string str(const ChemComp& cc, const Restraints::Bond& b) {
return gemmi::cat("bond ", b.id1.atom, '-', b.id2.atom,
" (", cc.get_atom(b.id1.atom).chem_type,
'-', cc.get_atom(b.id2.atom).chem_type, ')');
}
std::string str(const ChemComp& cc, const Restraints::Angle& a) {
return gemmi::cat("angle ", a.id1.atom, '-', a.id2.atom, '-', a.id3.atom,
" (", cc.get_atom(a.id1.atom).chem_type,
'-', cc.get_atom(a.id2.atom).chem_type,
'-', cc.get_atom(a.id3.atom).chem_type, ')');
}
std::string str(const ChemComp&, const Restraints::Torsion& a) {
return "torsion " + a.str();
}
std::string str(const ChemComp&, const Restraints::Chirality& a) {
return "chirality " + a.str();
}
const char* mark(double delta, double eps) {
if (delta < eps) return "";
if (delta < 2*eps) return "*";
if (delta < 4*eps) return "**";
if (delta < 8*eps) return "***";
return "****";
}
void compare_chemcomps(const ChemComp& cc1, const ChemComp& cc2,
const MinDelta& delta) {
// atoms
for (const ChemComp::Atom& a : cc1.atoms) {
auto b = cc2.find_atom(a.id);
if (b == cc2.atoms.end())
printf("- atom %s (%s)\n", a.id.c_str(), a.chem_type.c_str());
else if (a.chem_type != b->chem_type)
printf("! atom %s (%s : %s)\n",
a.id.c_str(), a.chem_type.c_str(), b->chem_type.c_str());
}
for (const ChemComp::Atom& a : cc2.atoms)
if (cc1.find_atom(a.id) == cc1.atoms.end())
printf("+ atom %s (%s)\n", a.id.c_str(), a.chem_type.c_str());
// bonds
for (const Restraints::Bond& a : cc1.rt.bonds) {
auto b = cc2.rt.find_bond(a.id1, a.id2);
if (b == cc2.rt.bonds.end()) {
printf("- %s\n", str(cc1, a).c_str());
} else {
if (a.type != b->type)
printf("! %-30s %s : %s\n", str(cc1, a).c_str(),
bond_type_to_string(a.type),
bond_type_to_string(b->type));
double d = std::fabs(a.value - b->value);
if ((d > delta.bond || std::fabs(a.esd - b->esd) > delta.bond_esd) &&
d > delta.rel * std::min(a.esd, b->esd))
printf("! %-30s %4s %.3f : %.3f esd %.3f : %.3f\n",
str(cc1, a).c_str(), mark(d, a.esd),
a.value, b->value, a.esd, b->esd);
}
}
for (const Restraints::Bond& a : cc2.rt.bonds)
if (cc1.rt.find_bond(a.id1, a.id2) == cc1.rt.bonds.end())
printf("+ %s\n", str(cc2, a).c_str());
// angles
for (const Restraints::Angle& a : cc1.rt.angles) {
auto b = cc2.rt.find_angle(a.id1, a.id2, a.id3);
if (b == cc2.rt.angles.end()) {
printf("- %s\n", str(cc1, a).c_str());
} else {
double d = std::fabs(a.value - b->value);
if ((d > delta.angle || std::fabs(a.esd - b->esd) > delta.angle_esd) &&
d > delta.rel * std::min(a.esd, b->esd))
printf("! %-30s %4s %6.2f : %6.2f esd %.2f : %.2f\n",
str(cc1, a).c_str(), mark(d, a.esd),
a.value, b->value, a.esd, b->esd);
}
}
for (const Restraints::Angle& a : cc2.rt.angles)
if (cc1.rt.find_angle(a.id1, a.id2, a.id3) == cc1.rt.angles.end())
printf("+ %s\n", str(cc2, a).c_str());
// torsion angles
for (const Restraints::Torsion& a : cc1.rt.torsions) {
auto b = cc2.rt.find_torsion(a.id1, a.id2, a.id3, a.id4);
if (b == cc2.rt.torsions.end()) {
printf("- %s\n", str(cc1, a).c_str());
} else {
double d = std::fabs(a.value - b->value);
if ((d > delta.angle || std::fabs(a.esd - b->esd) > delta.angle_esd) &&
d > delta.rel * std::min(a.esd, b->esd))
printf("! %-30s %4s %6.2f : %6.2f esd %.2f : %.2f\n",
str(cc1, a).c_str(), mark(d, a.esd),
a.value, b->value, a.esd, b->esd);
}
}
for (const Restraints::Torsion& a : cc2.rt.torsions)
if (cc1.rt.find_torsion(a.id1, a.id2, a.id3,a.id4) == cc1.rt.torsions.end())
printf("+ %s\n", str(cc2, a).c_str());
// chiralities
std::vector<bool> matched_chir(cc2.rt.chirs.size(), false);
for (const Restraints::Chirality& a : cc1.rt.chirs) {
if (a.sign == ChiralityType::Both) // not interesting
continue;
auto b = cc2.rt.find_chir(a.id_ctr, a.id1, a.id2, a.id3);
if (b != cc2.rt.chirs.end()) {
if (a.sign != b->sign)
printf("! %-30s %s : %s\n", str(cc1, a).c_str(),
chirality_to_string(a.sign), chirality_to_string(b->sign));
matched_chir[b - cc2.rt.chirs.begin()] = true;
continue;
}
b = cc2.rt.find_chir(a.id_ctr, a.id1, a.id3, a.id2);
if (b == cc2.rt.chirs.end()) {
printf("- %s %s\n", str(cc1, a).c_str(), chirality_to_string(a.sign));
} else {
matched_chir[b - cc2.rt.chirs.begin()] = true;
if (b->sign == ChiralityType::Both || b->sign == a.sign)
printf("! %-30s %s : -%s\n", str(cc1, a).c_str(),
chirality_to_string(a.sign), chirality_to_string(b->sign));
}
}
for (size_t i = 0; i != cc2.rt.chirs.size(); ++i)
if (!matched_chir[i]) {
const Restraints::Chirality& a = cc2.rt.chirs[i];
printf("+ %s %s\n", str(cc2, a).c_str(), chirality_to_string(a.sign));
}
// planes
std::vector<bool> matched_planes(cc2.rt.planes.size(), false);
std::vector<std::set<Restraints::AtomId>> planes2;
planes2.reserve(cc2.rt.planes.size());
for (const Restraints::Plane& b : cc2.rt.planes)
planes2.emplace_back(b.ids.begin(), b.ids.end());
for (const Restraints::Plane& a : cc1.rt.planes) {
std::set<Restraints::AtomId> plane1(a.ids.begin(), a.ids.end());
auto b = std::find(planes2.begin(), planes2.end(), plane1);
if (b == planes2.end()) {
printf("- plane %s\n", a.str().c_str());
continue;
}
double b_esd = cc2.rt.planes[b - planes2.begin()].esd;
if (std::fabs(a.esd - b_esd) > 0.02)
printf("! plane %-53s esd %.2f : %.2f\n", a.str().c_str(), a.esd, b_esd);
b->clear();
}
for (size_t i = 0; i != planes2.size(); ++i)
if (!planes2[i].empty())
printf("+ plane %s\n", cc2.rt.planes[i].str().c_str());
}
} // anonymous namespace
int GEMMI_MAIN(int argc, char **argv) {
OptParser p(EXE_NAME);
p.simple_parse(argc, argv, Usage);
p.require_positional_args(2);
bool verbose = p.options[Verbose];
const char* path1 = p.nonOption(0);
const char* path2 = p.nonOption(1);
MinDelta delta;
if (p.options[Bond])
delta.bond = std::atof(p.options[Bond].arg);
if (p.options[BondEsd])
delta.bond_esd = std::atof(p.options[BondEsd].arg);
if (p.options[Angle])
delta.angle = std::atof(p.options[Angle].arg);
if (p.options[AngleEsd])
delta.angle_esd = std::atof(p.options[AngleEsd].arg);
if (p.options[Relative])
delta.rel = std::atof(p.options[Relative].arg);
try {
if (verbose)
fprintf(stderr, "Reading %s ...\n", path1);
cif::Document doc1 = read_cif_gz(path1);
const cif::Block* block1 = &doc1.blocks.at(0);
if (block1->name == "comp_list")
block1 = &doc1.blocks.at(1);
if (verbose)
fprintf(stderr, "Reading %s ...\n", path2);
cif::Document doc2 = read_cif_gz(path2);
const cif::Block* block2 = doc2.find_block(block1->name);
if (!block2)
fail("Block ", block1->name, " not found in ", path2);
ChemComp cc1 = make_chemcomp_from_block(*block1);
ChemComp cc2 = make_chemcomp_from_block(*block2);
compare_chemcomps(cc1, cc2, delta);
} catch (std::runtime_error& e) {
fprintf(stderr, "ERROR: %s\n", e.what());
return 1;
} catch (std::out_of_range& e) {
fprintf(stderr, "ERROR: %s\n", e.what());
return 2;
}
return 0;
}
|