1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
|
// Copyright 2019 Global Phasing Ltd.
//
// MTZ info
#include <cstdio>
#include <iostream> // for cerr
#include <unordered_map>
#include <gemmi/mtz.hpp>
#include <gemmi/asudata.hpp> // for AsuData
#include <gemmi/fileutil.hpp> // for file_open
#include <gemmi/gz.hpp> // for MaybeGzipped
#include <gemmi/input.hpp> // for FileStream, MemoryStream
#include <gemmi/reciproc.hpp> // for count_reflections
#include "histogram.h" // for print_histogram
#define GEMMI_PROG mtz
#include "options.h"
using gemmi::Mtz;
using std::printf;
namespace {
struct MtzArg: public Arg {
static option::ArgStatus AsuChoice(const option::Option& option, bool msg) {
return Arg::Choice(option, msg, {"ccp4", "tnt"});
}
};
enum OptionIndex {
Headers=4, Dump, PrintBatch, PrintBatches, ExpandedBatches, PrintAppendix,
PrintTsv, PrintStats, PrintHistogram, PrintCells, CheckAsu,
Compare, ToggleEndian, NoIsym, UpdateReso
};
const option::Descriptor Usage[] = {
{ NoOp, 0, "", "", Arg::None,
"Usage:\n " EXE_NAME " [options] MTZ_FILE[...]"
"\nPrint information from an mtz file."},
CommonUsage[Help],
CommonUsage[Version],
CommonUsage[Verbose],
{ Headers, 0, "H", "headers", Arg::None,
" -H, --headers \tPrint raw headers, until the END record." },
{ Dump, 0, "d", "dump", Arg::None,
" -d, --dump \tPrint a subset of CCP4 mtzdmp information." },
{ PrintBatch, 0, "B", "batch", Arg::Int,
" -B N, --batch=N \tPrint data from batch header N." },
{ PrintBatches, 0, "b", "batches", Arg::None,
" -b, --batches \tPrint data from all batch headers." },
{ ExpandedBatches, 0, "e", "", Arg::None,
" -e \t(with -B or -b) expanded info from batch headers." },
{ PrintAppendix, 0, "A", "appendix", Arg::None,
" -A, --appendix \tPrint appended text." },
{ PrintTsv, 0, "", "tsv", Arg::None,
" --tsv \tPrint all the data as tab-separated values." },
{ PrintStats, 0, "s", "stats", Arg::None,
" -s, --stats \tPrint column statistics (completeness, mean, etc)." },
{ PrintHistogram, 0, "", "histogram", Arg::Required,
" --histogram=LABEL \tPrint histogram of values in column LABEL." },
{ PrintCells, 0, "", "cells", Arg::None,
" --cells \tPrint cell parameters only." },
{ CheckAsu, 0, "", "check-asu", MtzArg::AsuChoice,
" --check-asu=ccp4|tnt \tCheck if reflections are in ASU." },
{ Compare, 0, "", "compare", Arg::Required,
" --compare=FILE \tCompare two MTZ files." },
{ ToggleEndian, 0, "", "toggle-endian", Arg::None,
" --toggle-endian \tToggle assumed endianness (little <-> big)." },
{ NoIsym, 0, "", "no-isym", Arg::None,
" --no-isym \tDo not apply symmetry from M/ISYM column." },
{ UpdateReso, 0, "", "update-reso", Arg::None,
" --update-reso \tRecalculate resolution limits before printing." },
{ 0, 0, 0, 0, 0, 0 }
};
void print_cell_parameters(const char* prefix, const gemmi::UnitCell& cell) {
printf("%s %g %7g %7g %6g %6g %6g\n", prefix,
cell.a, cell.b, cell.c, cell.alpha, cell.beta, cell.gamma);
}
void dump(const Mtz& mtz) {
printf("Title: %s\n", mtz.title.c_str());
printf("Total Number of Datasets = %zu\n\n", mtz.datasets.size());
for (const Mtz::Dataset& ds : mtz.datasets) {
printf("Dataset %4d %s > %s > %s:\n",
ds.id, ds.project_name.c_str(),
ds.crystal_name.c_str(), ds.dataset_name.c_str());
print_cell_parameters(" cell ", ds.cell);
printf(" wavelength %g\n", ds.wavelength);
}
printf("\nNumber of Columns = %zu\n", mtz.columns.size());
printf("Number of Reflections = %d\n", mtz.nreflections);
printf("Number of Batches = %zu\n", mtz.batches.size());
printf("Missing values marked as: %g\n", mtz.valm);
print_cell_parameters("Global Cell (obsolete): ", mtz.cell);
printf("Resolution: %.2f - %.2f A\n",
mtz.resolution_high(), mtz.resolution_low());
printf("Sort Order: %d %d %d %d %d\n",
mtz.sort_order[0], mtz.sort_order[1], mtz.sort_order[2],
mtz.sort_order[3], mtz.sort_order[4]);
printf("Space Group: %s\n", mtz.spacegroup_name.c_str());
printf("Space Group Number: %d\n", mtz.spacegroup_number);
if (mtz.symops.empty()) {
printf("No SYMM records.\n");
} else {
gemmi::GroupOps gops = gemmi::split_centering_vectors(mtz.symops);
const gemmi::SpaceGroup* symm_sg = find_spacegroup_by_ops(gops);
if (symm_sg == nullptr) {
printf("Space Group from SYMM Records: unknown, the operations are:\n");
for (const gemmi::Op& op : mtz.symops)
printf(" %s\n", op.triplet().c_str());
} else {
printf("Space Group from SYMM Records: %s\n", symm_sg->xhm().c_str());
if (symm_sg != mtz.spacegroup)
printf(" WARNING: the space group differs!\n");
}
}
printf("\nHeader info (run with option -s for recalculated statistics):\n");
printf("Column Type Dataset Min Max\n");
for (const Mtz::Column& col : mtz.columns)
printf("%-12s %c %2d %12.6g %10.6g\n",
col.label.c_str(), col.type, col.dataset_id,
col.min_value, col.max_value);
if (mtz.history.empty()) {
printf("\nNo history in the file.\n");
} else {
printf("\nHistory (%zu lines):\n", mtz.history.size());
for (const std::string& hline : mtz.history)
printf("%s\n", hline.c_str());
}
if (!mtz.batches.empty()) {
int prev_ds_id = -INT_MAX;
int bspan[2] = {-INT_MAX, -INT_MAX};
printf("\nBatch numbers:");
for (size_t i = 0; i < mtz.batches.size(); ++i) {
const Mtz::Batch& batch = mtz.batches[i];
int ds_id = batch.dataset_id();
if (ds_id != prev_ds_id || batch.number != bspan[1] + 1) {
if (i != 0)
printf(" %d-%d", bspan[0], bspan[1]);
bspan[0] = batch.number;
if (ds_id != prev_ds_id) {
printf("\n dataset %d:", ds_id);
prev_ds_id = ds_id;
}
}
bspan[1] = batch.number;
}
printf(" %d-%d\n", bspan[0], bspan[1]);
}
if (!mtz.appended_text.empty())
printf("\nAppendix: %zu bytes.\n", mtz.appended_text.size());
}
const char* batch_int_desc[] = {
"no. of words",
"no. of integers",
"no. of reals",
"type of orientation block", // 3
"refinement flag for cell a",
"refinement flag for cell b",
"refinement flag for cell c",
"refinement flag for cell alpha",
"refinement flag for cell beta",
"refinement flag for cell gamma",
"no. of missetting angle sets (PhiXYZ)", // 10
"reciprocal axis closest to rot. axis E1",
"crystal number",
"crystal mosaicity (0=iso, 1=anisotropic)",
"type of data (1=2D, 2=3D, 3=Laue)",
"goniostat scan axis number", // 15
"no. of batch scales & Bfactors + SD's",
"no. of goniostat axes",
"beam info (0=lab, 1=synchrotron)",
"no. of detectors",
"dataset id", // 20
};
const char* batch_float_desc[] = {
"unit cell a", // 0
"unit cell b",
"unit cell c",
"unit cell alpha",
"unit cell beta",
"unit cell gamma",
"U(1,1)", "U(2,1)", "U(3,1)", // 6-8
"U(1,2)", "U(2,2)", "U(3,2)",
"U(1,3)", "U(2,3)", "U(3,3)",
"misseting angle PhiXYZ(1,1)", // 15
"misseting angle PhiXYZ(2,1)",
"misseting angle PhiXYZ(3,1)",
"misseting angle PhiXYZ(1,2)",
"misseting angle PhiXYZ(2,2)",
"misseting angle PhiXYZ(3,2)",
"mosaicity(1) reflection width (deg)", // 21
"mosaicity(2) vertical width (deg)",
nullptr, nullptr, nullptr, nullptr, nullptr, // mosaicity padding
nullptr, nullptr, nullptr, nullptr, nullptr,
"datum(1) value of goniostat axis", // 33
"datum(2) value of goniostat axis",
"datum(3) value of goniostat axis",
"initial phi relative to datum", // 36
"final phi relative to datum",
"scanax(1) rotation axis in lab frame", // 38
"scanax(2) rotation axis in lab frame",
"scanax(3) rotation axis in lab frame",
"start time [minutes]", // 41
"stop time [minutes]",
"batch scale", // 43
"batch temperature factor",
"sd of batch scale",
"sd of temperature factor",
"range of phi values", // 47
nullptr, nullptr, nullptr, nullptr, nullptr,
nullptr, nullptr, nullptr, nullptr, nullptr,
nullptr,
"E1(1) \"Cambridge\" lab axes...", // 59
"E1(2) ...defining goniostat axes",
"E1(3)",
"E2(1)",
"E2(2)",
"E2(3)",
"E3(1)",
"E3(2)",
"E3(3)",
nullptr, nullptr, nullptr, nullptr, nullptr, // 68-79
nullptr, nullptr, nullptr, nullptr, nullptr,
nullptr, nullptr,
"source(1) idealised (ie. excluding ...", // 80
"source(2) ...tilts) source vector, ...",
"source(3) ...in Cambridge lab frame",
"S0(1) source vector (incl. tilts), ...", // 83
"S0(2) ...antiparallel to beam, ...",
"S0(3) ...in Cambridge lab frame",
"wavelength [A]", // 86
"dispersion delta(lambda)/lambda", // 87
"correlated component of dispersion",
"horizontal beam divergence (deg)", // 89
"vertical beam divergence (0=isotropic)",
};
const char* batch_det_desc[] = {
"DX crystal to detector distance [mm]", // 111+40n
"THETA detector tilt angle [deg]",
"minimum Y coordinate [pixel]", // 113+40n
"maximum Y coordinate [pixel]",
"minimum Z coordinate [pixel]",
"maximum Z coordinate [pixel]",
};
void print_batch(const Mtz::Batch& b, bool expanded) {
printf("Batch %d - %s\n", b.number, b.title.c_str());
printf(" %zu %s: %s\n", b.axes.size(),
b.axes.size() == 1 ? "axis" : "axes",
gemmi::join_str(b.axes, ", ").c_str());
printf(" %4zu integers:", b.ints.size());
for (size_t i = 0; i != b.ints.size(); ++i) {
if (expanded) {
constexpr size_t n = sizeof(batch_int_desc) / sizeof(batch_int_desc[0]);
const char* desc = i < n ? batch_int_desc[i] : nullptr;
if (desc || b.ints[i] != 0)
printf("\n %4zu %-40s %5d", i, desc ? desc : "", b.ints[i]);
} else {
if (i != 0 && i % 10 == 0)
printf("\n ");
printf(" %5d", b.ints[i]);
}
}
printf("\n %4zu floats:", b.floats.size());
size_t last_non_zero = b.floats.size();
while (last_non_zero != 0 && b.floats[last_non_zero - 1] == 0.f)
--last_non_zero;
if (expanded) {
size_t expected_end = 111;
for (size_t i = 0; i < std::min(b.floats.size(), expected_end); ++i) {
constexpr size_t n = sizeof(batch_float_desc) / sizeof(batch_float_desc[0]);
const char* desc = i < n ? batch_float_desc[i] : nullptr;
if (desc || b.floats[i] != 0)
printf("\n %4zu %-40s %-.5g", i, desc ? desc : "", b.floats[i]);
}
int ndet = b.ints[19];
if (ndet < 0)
gemmi::fail("NDET < 0");
for (int det = 0; det < ndet; ++det) {
printf("\n detector #%d", det+1);
size_t offset = expected_end;
expected_end += 40;
if (b.floats.size() < expected_end)
gemmi::fail("header too short for no. detectors:", std::to_string(ndet));
constexpr size_t n = sizeof(batch_det_desc) / sizeof(batch_det_desc[0]);
for (size_t i = 0; i < 40; ++i) {
const char* desc = i < n ? batch_det_desc[i] : nullptr;
size_t oi = offset + i;
if (desc || b.floats[oi] != 0)
printf("\n %4zu %-40s %-.5g", oi, desc ? desc : "", b.floats[oi]);
}
}
for (size_t i = expected_end; i < b.floats.size(); ++i)
if (b.floats[i] != 0)
printf("\n %4zu %-40s %-.5g", i, "??", b.floats[i]);
printf("\n");
} else {
for (size_t i = 0; i != b.floats.size(); ++i) {
if (i != 0 && i % 5 == 0) {
printf("\n %4zu| ", i);
if (i >= last_non_zero) {
printf(" ...");
break;
}
}
printf(" %12.5g", b.floats[i]);
}
printf("\n dataset: %d\n", b.dataset_id());
}
}
void print_batch_extra_info(const Mtz::Batch& b) {
gemmi::UnitCell uc = b.get_cell();
print_cell_parameters(" Unit cell parameters:", uc);
printf(" Phi start - end: %g - %g\n", b.phi_start(), b.phi_end());
gemmi::Mat33 u = b.matrix_U();
for (int i = 0; i != 3; ++i)
printf(" %s % 10.6f % 10.6f % 10.6f\n",
i == 0 ? "Orientation matrix U:" : " ",
u.a[i][0], u.a[i][1], u.a[i][2]);
}
void print_cells(const Mtz& mtz) {
print_cell_parameters("global cell param.:", mtz.cell);
for (const Mtz::Dataset& ds : mtz.datasets) {
printf("dataset %d %-8s:", ds.id, ds.dataset_name.c_str());
print_cell_parameters("", ds.cell);
}
}
void print_tsv(const Mtz& mtz) {
size_t ncol = mtz.columns.size();
for (size_t i = 0; i < ncol; ++i)
printf("%s%c", mtz.columns[i].label.c_str(), i + 1 != ncol ? '\t' : '\n');
for (size_t i = 0; i < mtz.nreflections * ncol; ++i)
printf("%g%c", mtz.data[i], (i + 1) % ncol != 0 ? '\t' : '\n');
}
void print_stats(const Mtz& mtz) {
struct ColumnStats {
float min_value = INFINITY;
float max_value = -INFINITY;
gemmi::Variance var;
};
std::vector<ColumnStats> column_stats(mtz.columns.size());
for (size_t i = 0; i != mtz.data.size(); ++i) {
float v = mtz.data[i];
if (!std::isnan(v)) {
ColumnStats& stat = column_stats[i % column_stats.size()];
if (v < stat.min_value)
stat.min_value = v;
if (v > stat.max_value)
stat.max_value = v;
stat.var.add_point(v);
}
}
printf("column type @dataset completeness min max"
" mean stddev\n");
for (size_t i = 0; i != column_stats.size(); ++i) {
const Mtz::Column& col = mtz.columns[i];
const ColumnStats& stat = column_stats[i];
printf("%-14s %c @%d %d (%6.2f%%) %9.5g %9.5g %9.5g %8.4g\n",
col.label.c_str(), col.type, col.dataset_id,
stat.var.n, 100.0 * stat.var.n / mtz.nreflections,
stat.min_value, stat.max_value,
stat.var.mean_x, std::sqrt(stat.var.for_population()));
}
if (!mtz.batches.empty()) {
const Mtz::Column* col = mtz.column_with_label("BATCH");
if (!col) {
printf("Missing column BATCH\n");
return;
}
std::unordered_map<int,int> batch_stat;
for (float b : *col)
batch_stat[(int)b]++;
int min_loc = 0;
int min_val = INT_MAX;
int max_loc = 0;
int max_val = -INT_MAX;
for (auto b : batch_stat) {
if (b.second < min_val) {
min_loc = b.first;
min_val = b.second;
}
if (b.second > max_val) {
max_loc = b.first;
max_val = b.second;
}
}
printf("\n%zu MTZ batches, including %d empty. Non-empty batches have\n",
mtz.batches.size(), (int)mtz.batches.size() - (int)batch_stat.size());
printf("from %d (in BATCH %d) to %d (in BATCH %d) reflections.\n",
min_val, min_loc, max_val, max_loc);
}
}
void print_column_statistics(const Mtz& mtz, const char* label) {
const Mtz::Column& col = mtz.get_column_with_label(label);
std::vector<float> data(col.size());
for (size_t i = 0; i != data.size(); ++i)
data[i] = col[i];
gemmi::DataStats st = gemmi::calculate_data_statistics(data);
std::printf("\nStatistics of column %s:\n", label);
std::printf("NaN count: %zu of %zu\n", st.nan_count, data.size());
if (st.nan_count == data.size())
return;
std::printf("Minimum: %12.5f\n", st.dmin);
std::printf("Maximum: %12.5f\n", st.dmax);
std::printf("Mean: %12.5f\n", st.dmean);
std::printf("RMS: %12.5f\n", st.rms);
if (st.nan_count != 0)
gemmi::vector_remove_if(data, [](float x) { return std::isnan(x); });
size_t mpos = data.size() / 2;
std::nth_element(data.begin(), data.begin() + mpos, data.end());
std::printf("Median: %12.5f\n", data[mpos]);
double margin = 0;
print_histogram(data, st.dmin - margin, st.dmax + margin);
}
void check_asu(const Mtz& mtz, bool tnt) {
size_t ncol = mtz.columns.size();
const gemmi::SpaceGroup* sg = mtz.spacegroup;
if (!sg)
gemmi::fail("no spacegroup in the MTZ file.");
int counter = 0;
gemmi::ReciprocalAsu asu(sg, tnt);
for (int i = 0; i < mtz.nreflections; ++i) {
int h = (int) mtz.data[i * ncol + 0];
int k = (int) mtz.data[i * ncol + 1];
int l = (int) mtz.data[i * ncol + 2];
if (asu.is_in({{h, k, l}}))
++counter;
}
if (!mtz.is_merged())
printf("NOTE: this is multirecord (unmerged) MTZ file\n");
printf("spacegroup: %s\n", sg->xhm().c_str());
printf("%s ASU convention wrt. standard setting: %s\n",
tnt ? "TNT" : "CCP4", asu.condition_str());
printf("inside / outside of ASU: %d / %d\n",
counter, mtz.nreflections - counter);
double dmin = mtz.resolution_high() - 1e-6;
printf("All unique reflections up to d=%g: %d\n",
dmin, gemmi::count_reflections(mtz.cell, mtz.spacegroup, dmin));
}
void compare_mtz(Mtz& mtz1, const char* path2, bool verbose) {
Mtz mtz2;
mtz2.read_input(gemmi::MaybeGzipped(path2), true);
if (mtz1.spacegroup != mtz2.spacegroup)
printf("Spacegroup differs: %s and %s\n",
mtz1.spacegroup_name.c_str(), mtz2.spacegroup_name.c_str());
else if (verbose)
printf("Spacegroup the same.\n");
if (mtz1.cell != mtz2.cell)
printf("Unit cell differs:\n %g %g %g %g %g %g\n %g %g %g %g %g %g\n",
mtz1.cell.a, mtz1.cell.b, mtz1.cell.c,
mtz1.cell.alpha, mtz1.cell.beta, mtz1.cell.gamma,
mtz2.cell.a, mtz2.cell.b, mtz2.cell.c,
mtz2.cell.alpha, mtz2.cell.beta, mtz2.cell.gamma);
else if (verbose)
printf("Unit cell the same.\n");
mtz1.sort();
mtz2.sort();
// Check if indices are the same. "H" is a dummy value for AsuData.
{
gemmi::AsuData<int> ad1 = gemmi::make_asu_data<int>(mtz1, "H", true);
gemmi::AsuData<int> ad2 = gemmi::make_asu_data<int>(mtz2, "H", true);
int n = gemmi::count_equal_values(ad1.v, ad2.v);
if (n != mtz1.nreflections || n != mtz2.nreflections)
printf("Miller indices differ: %d common (all: %d and %d).\n",
n, mtz1.nreflections, mtz2.nreflections);
else
printf("All Miller indices are the same. Count: %d\n", n);
}
for (auto col = mtz1.columns.begin() + 3; col < mtz1.columns.end(); ++col) {
const Mtz::Column* col2 = mtz2.column_with_label(col->label);
if (!col2) {
printf("Missing column: %s\n", col->label.c_str());
continue;
}
if (col->type != col2->type) {
printf("Type of column %s differs: %c and %c\n",
col->label.c_str(), col->type, col2->type);
continue;
}
if (col->type == 'F' && col+1 != mtz1.columns.end() && (col+1)->type == 'P') {
std::array<std::string,2> labels{{col->label, (col+1)->label}};
auto ad1 = gemmi::make_asu_data<std::complex<float>,2>(mtz1, labels, true);
auto ad2 = gemmi::make_asu_data<std::complex<float>,2>(mtz2, labels, true);
gemmi::ComplexCorrelation cor = gemmi::calculate_hkl_complex_correlation(ad1.v, ad2.v);
std::complex<double> cc = cor.coefficient();
printf("Column %s/%s: |CC|=%.8g phase(CC)=%g deg ratio=%g n=%d\n",
col->label.c_str(), (col+1)->label.c_str(),
std::abs(cc), gemmi::deg(std::arg(cc)), cor.mean_ratio(), cor.n);
++col;
} else if (col->type == 'I' || col->type == 'B' || col->type == 'Y') {
auto ad1 = gemmi::make_asu_data<float>(mtz1, col->label, true);
auto ad2 = gemmi::make_asu_data<float>(mtz2, col->label, true);
int nid = gemmi::count_equal_values(ad1.v, ad2.v);
printf("Column %s: identical: %d (all: %zu and %zu)\n",
col->label.c_str(), nid, ad1.size(), ad2.size());
} else { // J, D, Q, G, L, K, M, E, P, A, Y
auto ad1 = gemmi::make_asu_data<float>(mtz1, col->label, true);
auto ad2 = gemmi::make_asu_data<float>(mtz2, col->label, true);
int nid = gemmi::count_equal_values(ad1.v, ad2.v);
printf("Column %s: identical: %d ", col->label.c_str(), nid);
if ((size_t)nid == ad1.size() && ad1.size() == ad2.size()) {
printf("(all)\n");
} else {
gemmi::Correlation cor = gemmi::calculate_hkl_value_correlation(ad1.v, ad2.v);
printf("CC=%.8g ratio=%.8g n=%d\n",
cor.coefficient(), cor.mean_ratio(), cor.n);
}
}
}
}
template<typename Stream>
void print_mtz_info(Stream&& stream, const char* path,
const std::vector<option::Option>& options) {
Mtz mtz;
try {
mtz.read_first_bytes(stream);
if (options[ToggleEndian])
mtz.toggle_endianness();
} catch (std::runtime_error& e) {
gemmi::fail(std::string(e.what()) + ": " + path);
}
if (options[Headers]) {
char buf[81] = {0};
mtz.seek_headers(stream);
while (stream.read(buf, 80)) {
printf("%s\n", gemmi::rtrim_str(buf).c_str());
if (gemmi::ialpha3_id(buf) == gemmi::ialpha3_id("END"))
break;
}
}
if (options[Verbose])
mtz.warnings = &std::cerr;
mtz.read_main_headers(stream);
mtz.read_history_and_batch_headers(stream);
mtz.setup_spacegroup();
if (options[PrintTsv] || options[PrintStats] || options[PrintHistogram] ||
options[CheckAsu] || options[Compare] || options[UpdateReso])
mtz.read_raw_data(stream);
if (options[UpdateReso])
mtz.update_reso();
if (options[Dump] ||
!(options[PrintBatch] || options[PrintBatches] || options[PrintTsv] ||
options[PrintStats] || options[PrintHistogram] ||
options[PrintAppendix] || options[PrintCells] ||
options[CheckAsu] || options[Compare] || options[Headers]))
dump(mtz);
if (options[PrintBatch]) {
for (const option::Option* o = options[PrintBatch]; o; o = o->next()) {
int number = std::atoi(o->arg);
for (const Mtz::Batch& b : mtz.batches)
if (b.number == number) {
bool expanded = options[ExpandedBatches];
print_batch(b, expanded);
if (!expanded)
print_batch_extra_info(b);
}
}
}
if (options[PrintBatches])
for (const Mtz::Batch& b : mtz.batches)
print_batch(b, options[ExpandedBatches]);
if (options[PrintAppendix])
printf("%s", mtz.appended_text.c_str());
if (mtz.has_data() && !options[NoIsym])
mtz.switch_to_original_hkl();
if (options[PrintCells])
print_cells(mtz);
for (const option::Option* opt = options[PrintHistogram]; opt; opt = opt->next())
print_column_statistics(mtz, opt->arg);
if (options[PrintTsv])
print_tsv(mtz);
if (options[PrintStats])
print_stats(mtz);
if (options[CheckAsu])
check_asu(mtz, options[CheckAsu].arg[0] == 't');
if (options[Compare])
// here mtz gets sorted, so this option must be at the end
compare_mtz(mtz, options[Compare].arg, options[Verbose]);
}
} // anonymous namespace
int GEMMI_MAIN(int argc, char **argv) {
OptParser p(EXE_NAME);
p.simple_parse(argc, argv, Usage);
p.require_input_files_as_args();
try {
for (int i = 0; i < p.nonOptionsCount(); ++i) {
const char* path = p.nonOption(i);
if (i != 0)
printf("\n\n");
if (p.options[Verbose]) {
std::fflush(stdout);
std::fprintf(stderr, "Reading %s ...\n", path);
std::fflush(stderr);
}
gemmi::MaybeGzipped input(path);
if (input.is_stdin()) {
print_mtz_info(gemmi::FileStream{stdin}, path, p.options);
} else if (gemmi::CharArray mem = input.uncompress_into_buffer()) {
print_mtz_info(mem.stream(), path, p.options);
} else {
gemmi::fileptr_t f = gemmi::file_open(input.path().c_str(), "rb");
print_mtz_info(gemmi::FileStream{f.get()}, path, p.options);
}
}
} catch (std::runtime_error& e) {
std::fflush(stdout);
std::fprintf(stderr, "ERROR: %s\n", e.what());
std::fflush(stderr);
return 1;
}
return 0;
}
|