1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
|
// Copyright 2019 Global Phasing Ltd.
//
// Calculate structure factors from a molecular model.
#include <stdio.h>
#include <complex>
#include <gemmi/assembly.hpp> // for expand_ncs
#include <gemmi/calculate.hpp> // for expand_box
#include <gemmi/ccp4.hpp> // for Ccp4
#include <gemmi/fileutil.hpp> // for file_open
#include <gemmi/fourier.hpp>
#include <gemmi/fprime.hpp> // for cromer_liberman
#include <gemmi/gz.hpp> // for MaybeGzipped
#include <gemmi/it92.hpp> // for IT92
#include <gemmi/c4322.hpp> // for C4322
#include <gemmi/neutron92.hpp> // for Neutron92
#include <gemmi/math.hpp> // for sq
#include <gemmi/mtz.hpp> // for Mtz
#include <gemmi/dencalc.hpp> // for DensityCalculator
#include <gemmi/scaling.hpp> // for Scaling
#include <gemmi/sfcalc.hpp> // for calculate_structure_factor
#include <gemmi/smcif.hpp> // for make_small_structure_from_block
#include <gemmi/solmask.hpp> // for SolventMasker
#include <gemmi/read_cif.hpp> // for read_cif_gz
#include <gemmi/mmread_gz.hpp> // for read_structure_gz
#include "timer.h" // for Timer
#define GEMMI_PROG sfcalc
#include "options.h"
namespace {
enum OptionIndex {
Hkl=4, Dmin, For, NormalizeIt92, Rate, Blur, RCut, Test, ToMtz, Compare,
CifFp, Wavelength, Unknown, NoAniso, Margin, ScaleTo, SigmaCutoff, FLabel,
PhiLabel, Ksolv, Bsolv, Baniso, RadiiSet, Rprobe, Rshrink, WriteMap
};
struct SfCalcArg: public Arg {
static option::ArgStatus FormFactors(const option::Option& option, bool msg) {
return Arg::Choice(option, msg, {"xray", "electron", "neutron", "mott-bethe"});
}
static option::ArgStatus Radii(const option::Option& option, bool msg) {
return Arg::Choice(option, msg, {"vdw", "cctbx", "refmac"});
}
static option::ArgStatus Float6(const option::Option& option, bool msg) {
if (option.arg) {
char* endptr = nullptr;
int counter = 0;
do {
(void) std::strtod(endptr ? endptr + 1 : option.arg, &endptr);
++counter;
} while (*endptr == ':');
if (counter == 6 && *endptr == '\0')
return option::ARG_OK;
}
if (msg)
fprintf(stderr, "Option '%.*s' requires six colon-separated numbers "
"as an argument,\n for example: %.*s=2.1:3:4:0:0:0\n",
option.namelen, option.name, option.namelen, option.name);
return option::ARG_ILLEGAL;
}
};
const option::Descriptor Usage[] = {
{ NoOp, 0, "", "", Arg::None,
"Usage:\n " EXE_NAME " [options] INPUT_FILE\n\n"
"Calculates structure factors of a model (PDB, mmCIF or SMX CIF file).\n\n"
"Uses FFT to calculate all reflections up to requested resolution for MX\n"
"files. Otherwise, for SMX and --hkl, F's are calculated directly.\n"
"This program can also compare F's calculated directly with values\n"
"calculated through FFT or with values read from a reflection file.\n"
"\nOptions:"},
CommonUsage[Help],
CommonUsage[Version],
CommonUsage[Verbose],
{ Hkl, 0, "", "hkl", Arg::Int3,
" --hkl=H,K,L \tCalculate structure factor F_hkl." },
{ Dmin, 0, "", "dmin", Arg::Float,
" --dmin=NUM \tCalculate structure factors up to given resolution." },
{ For, 0, "", "for", SfCalcArg::FormFactors,
" --for=TYPE \tTYPE is xray (default), electron, neutron or mott-bethe." },
{ NormalizeIt92, 0, "", "normalize-it92", Arg::None,
" --normalize-it92 \tNormalize X-ray form factors (a tiny change)." },
{ CifFp, 0, "", "ciffp", Arg::None,
" --ciffp \tRead f' from _atom_type_scat_dispersion_real in CIF." },
{ Wavelength, 0, "w", "wavelength", Arg::Float,
" --wavelength=NUM \tWavelength [A] for calculation of f' "
"(use --wavelength=0 or -w0 to ignore anomalous scattering)." },
{ Unknown, 0, "", "unknown", Arg::Required,
" --unknown=SYMBOL \tUse form factor of SYMBOL for unknown atoms." },
{ NoAniso, 0, "", "noaniso", Arg::None,
" --noaniso \tIgnore anisotropic ADPs." },
{ Margin, 0, "", "margin", Arg::Float,
" --margin=NUM \tFor non-crystal use bounding box w/ margin (default: 10)." },
{ NoOp, 0, "", "", Arg::None,
"\nOptions for density and FFT calculations (with --dmin):" },
{ Rate, 0, "", "rate", Arg::Float,
" --rate=NUM \tShannon rate used for grid spacing (default: 1.5)." },
{ Blur, 0, "", "blur", Arg::Float,
" --blur=NUM \tB added for Gaussian blurring (default: auto)." },
{ RCut, 0, "", "rcut", Arg::Float,
" --rcut=Y \tUse atomic radius r such that rho(r) < Y (default: 1e-5)." },
{ Test, 0, "", "test", Arg::Optional,
" --test[=CACHE] \tCalculate exact values and report differences (slow)." },
{ WriteMap, 0, "", "write-map", Arg::Required,
" --write-map=FILE \tWrite density (excl. bulk solvent) as CCP4 map." },
{ ToMtz, 0, "", "to-mtz", Arg::Required,
" --to-mtz=FILE \tWrite Fcalc to a new MTZ file." },
{ NoOp, 0, "", "", Arg::None, "\nOptions for anisotropic scaling (only w/ FFT):" },
{ ScaleTo, 0, "", "scale-to", Arg::Required,
" --scale-to=FILE:COL \tAnisotropic scaling to F from MTZ file."
"\n\tArgument: FILE[:FCOL[:SIGFCOL]] (defaults: F and SIGF)." },
{ SigmaCutoff, 0, "", "sigma-cutoff", Arg::Float,
" --sigma-cutoff=NUM \tUse only data with F/SIGF > NUM (default: 0)." },
// TODO: solvent option: mask, babinet, none
{ NoOp, 0, "", "", Arg::None, "\nOptions for bulk solvent correction (only w/ FFT):" },
{ RadiiSet, 0, "", "radii-set", SfCalcArg::Radii,
" --radii-set=SET \tSet of per-element radii, one of: vdw, cctbx, refmac." },
{ Rprobe, 0, "", "r-probe", Arg::Float,
" --r-probe=NUM \tValue added to VdW radius (default: 1.0A)." },
{ Rshrink, 0, "", "r-shrink", Arg::Float,
" --r-shrink=NUM \tValue for shrinking the solvent area (default: 1.1A)." },
{ Ksolv, 0, "", "ksolv", Arg::Float,
" --ksolv=NUM \tValue (if optimizing: initial value) of k_solv." },
{ Bsolv, 0, "", "bsolv", Arg::Float,
" --bsolv=NUM \tValue (if optimizing: initial value) of B_solv." },
{ Baniso, 0, "", "baniso", SfCalcArg::Float6,
" --baniso=B11:...:B23 \tAnisotropic scale matrix (6 colon-separated numbers: "
"B11, B22, B33, B12, B13, B23)." },
{ NoOp, 0, "", "", Arg::None,
"\nOptions for comparing calculated values with values from a file:" },
{ Compare, 0, "", "compare", Arg::Required,
" --compare=FILE \tRe-calculate Fcalc and report differences." },
{ FLabel, 0, "", "f", Arg::Required,
" --f=LABEL \tMTZ column label (default: FC) or small molecule cif"
" tag (default: F_calc or F_squared_calc)." },
{ PhiLabel, 0, "", "phi", Arg::Required,
" --phi=LABEL \tMTZ column label (default: PHIC)." },
{ 0, 0, 0, 0, 0, 0 }
};
struct RefFile {
enum class Mode { None, Test, Compare, WriteMtz };
Mode mode = Mode::None;
const char* path = nullptr;
std::string f_label;
std::string phi_label;
};
void print_sf(std::complex<double> sf, const gemmi::Miller& hkl) {
printf(" (%d %d %d)\t%.8f\t%.6f\n",
hkl[0], hkl[1], hkl[2], std::abs(sf), gemmi::phase_in_angles(sf));
}
struct Comparator {
double sum_sq_diff = 0.;
double sum_sq1 = 0.;
double sum_sq2 = 0.;
double sum_abs = 0.;
double max_abs_df = 0.;
double sum_abs_diff = 0.;
int count = 0;
double phi_diff_weighted_sum = 0.;
template<typename T> void add(T value, T exact) {
double abs_df = std::abs(value - exact);
sum_sq_diff += abs_df * abs_df;
sum_sq1 += gemmi::sq(std::abs(value));
sum_sq2 += gemmi::sq(std::abs(exact));
sum_abs += std::abs(exact);
sum_abs_diff += std::abs(std::abs(value) - std::abs(exact));
if (abs_df > max_abs_df)
max_abs_df = abs_df;
++count;
}
void add_complex(std::complex<double> value, std::complex<double> exact) {
add(value, exact);
double d = gemmi::angle_abs_diff(gemmi::deg(std::arg(value)),
gemmi::deg(std::arg(exact)));
phi_diff_weighted_sum += std::abs(exact) * d;
}
double rmse() const { return std::sqrt(sum_sq_diff / count); }
double abs_avg() const { return sum_abs / count; }
double weighted_rmse() const { return rmse() / abs_avg(); }
double rfactor() const { return sum_abs_diff / sum_abs; }
double scale() const { return std::sqrt(sum_sq1 / sum_sq2); }
double mean_dphi() const { return phi_diff_weighted_sum / sum_abs; }
};
void print_to_stderr(const Comparator& c) {
fflush(stdout);
fprintf(stderr, "RMSE=%#.5g %#.4g%% max|dF|=%#.4g R=%.3f%%",
c.rmse(), 100 * c.weighted_rmse(), c.max_abs_df, 100 * c.rfactor());
}
template<typename Real>
void write_asudata_to_mtz(const gemmi::AsuData<std::complex<Real>>& asu_data,
const RefFile& file) {
std::unique_ptr<gemmi::Mtz> output_mtz(new gemmi::Mtz(true));
output_mtz->set_cell_for_all(asu_data.unit_cell());
output_mtz->spacegroup = asu_data.spacegroup();
output_mtz->add_dataset("calculated");
output_mtz->add_column(file.f_label, 'F', -1, -1, false);
output_mtz->add_column(file.phi_label, 'P', -1, -1, false);
output_mtz->title = "Fcalc generated by gemmi";
output_mtz->nreflections = (int) asu_data.v.size();
output_mtz->data.reserve(5 * asu_data.v.size());
for (const gemmi::HklValue<std::complex<Real>>& hv : asu_data.v) {
for (int i = 0; i != 3; ++i)
output_mtz->data.push_back((float) hv.hkl[i]);
output_mtz->data.push_back((float) std::abs(hv.value));
output_mtz->data.push_back((float) gemmi::phase_in_angles(hv.value));
}
output_mtz->write_to_file(file.path);
}
template<typename Table, typename Real>
void process_with_fft(const gemmi::Structure& st,
gemmi::DensityCalculator<Table, Real>& dencalc,
bool mott_bethe,
const gemmi::SolventMasker& masker,
gemmi::Scaling<Real>& scaling,
bool verbose, const RefFile& file,
const gemmi::AsuData<gemmi::ValueSigma<Real>>& scale_to,
const char* map_file) {
// prepare electron density map
if (verbose) {
fprintf(stderr, "Preparing electron density on a grid...\n");
fflush(stderr);
}
Timer timer(verbose);
timer.start();
dencalc.set_grid_cell_and_spacegroup(st);
dencalc.put_model_density_on_grid(st.models[0]);
timer.print("...took");
if (map_file) {
gemmi::Ccp4<Real> ccp4;
ccp4.grid = dencalc.grid;
ccp4.update_ccp4_header(2);
ccp4.write_ccp4_map(map_file);
}
if (verbose) {
#if GEMMI_COUNT_DC
fprintf(stderr, "Density-points calculated: %zu (avg per atom: %g)\n",
dencalc.density_computations,
double(dencalc.density_computations) / dencalc.atoms_added);
#endif
fprintf(stderr, "FFT of grid %d x %d x %d\n",
dencalc.grid.nu, dencalc.grid.nv, dencalc.grid.nw);
fflush(stderr);
timer.start();
}
gemmi::FPhiGrid<Real> sf = transform_map_to_f_phi(dencalc.grid, /*half_l=*/true);
if (verbose) {
timer.print("...took");
fprintf(stderr, "Preparing results...\n");
fflush(stderr);
}
gemmi::StructureFactorCalculator<Table> calc(st.cell);
calc.addends = dencalc.addends;
gemmi::fileptr_t cache(nullptr, nullptr);
gemmi::AsuData<std::complex<double>> compared_data;
if (file.path) {
if (file.mode == RefFile::Mode::Test) {
cache = gemmi::file_open(file.path, "r");
} else if (file.mode == RefFile::Mode::Compare) {
gemmi::Mtz mtz;
mtz.read_input(gemmi::MaybeGzipped(file.path), true);
compared_data.load_values<2>(gemmi::MtzDataProxy{mtz}, {file.f_label, file.phi_label});
}
}
auto asu_data = sf.prepare_asu_data(dencalc.d_min, dencalc.blur, false, false, mott_bethe);
gemmi::AsuData<std::complex<Real>> mask_data;
if (scaling.use_solvent) {
// uses scaling.grid as a temporary array
masker.put_mask_on_grid(dencalc.grid, st.models[0]);
mask_data = transform_map_to_f_phi(dencalc.grid, /*half_l=*/true)
.prepare_asu_data(dencalc.d_min, 0);
}
if (scale_to.size() != 0) {
scaling.prepare_points(asu_data, scale_to, &mask_data);
printf("Calculating scale factors using %zu points...\n", scaling.points.size());
scaling.fit_isotropic_b_approximately();
//fprintf(stderr, "k_ov=%g B_ov=%g\n", scaling.k_overall, scaling.get_b_overall().u11);
scaling.fit_parameters();
gemmi::SMat33<double> b_aniso = scaling.get_b_overall();
if (scaling.use_solvent)
fprintf(stderr, "Bulk solvent parameters: k_sol=%g B_sol=%g\n",
scaling.k_sol, scaling.b_sol);
fprintf(stderr, "k_ov=%g B11=%g B22=%g B33=%g B12=%g B13=%g B23=%g\n",
scaling.k_overall, b_aniso.u11, b_aniso.u22, b_aniso.u33,
b_aniso.u12, b_aniso.u13, b_aniso.u23);
if (verbose) {
std::vector<double> computed = scaling.compute_values();
Comparator comparator;
for (size_t i = 0; i != scaling.points.size(); ++i)
comparator.add(computed[i], (double)scaling.points[i].fobs);
fprintf(stderr, "After scaling: ");
print_to_stderr(comparator);
fprintf(stderr, "\n");
}
}
scaling.scale_data(asu_data, &mask_data);
if (file.mode == RefFile::Mode::WriteMtz) {
write_asudata_to_mtz(asu_data, file);
} else if (file.mode == RefFile::Mode::None) {
for (gemmi::HklValue<std::complex<Real>>& hv : asu_data.v)
print_sf(hv.value, hv.hkl);
} else {
Comparator comparator;
for (gemmi::HklValue<std::complex<Real>>& hv : asu_data.v) {
std::complex<double> exact;
if (file.path) {
if (file.mode == RefFile::Mode::Test) {
char cache_line[100];
if (fgets(cache_line, 99, cache.get()) == nullptr)
gemmi::fail("cannot read line from file");
gemmi::Miller cache_hkl;
double f_abs, f_deg;
sscanf(cache_line, " (%d %d %d) %*f %lf %*f %lf",
&cache_hkl[0], &cache_hkl[1], &cache_hkl[2], &f_abs, &f_deg);
if (cache_hkl != hv.hkl)
gemmi::fail("Different h k l order than in cache file.");
exact = std::polar(f_abs, gemmi::rad(f_deg));
} else if (file.mode == RefFile::Mode::Compare) {
auto it = std::lower_bound(compared_data.v.begin(), compared_data.v.end(), hv.hkl);
if (it == compared_data.v.end() || it->hkl != hv.hkl)
continue;
exact = it->value;
}
} else {
exact = calc.calculate_sf_from_model(st.models[0], hv.hkl);
if (mott_bethe)
exact *= calc.mott_bethe_factor();
}
comparator.add_complex(hv.value, exact);
printf(" (%d %d %d)\t%7.2f\t%8.3f \t%6.2f\t%7.3f\td=%5.2f\n",
hv.hkl[0], hv.hkl[1], hv.hkl[2], std::abs(hv.value), std::abs(exact),
gemmi::phase_in_angles(hv.value, 5e-4), gemmi::phase_in_angles(exact, 5e-4),
sf.unit_cell.calculate_d(hv.hkl));
}
print_to_stderr(comparator);
fprintf(stderr, " <dPhi>=%#.4g", comparator.mean_dphi());
if (!verbose)
fprintf(stderr, " %#.5gs", timer.count());
fprintf(stderr, "\n");
}
}
template<typename Table>
void print_structure_factors_sm(const gemmi::SmallStructure& small,
gemmi::StructureFactorCalculator<Table>& calc,
bool mott_bethe, double d_min, bool verbose,
const RefFile& file) {
Timer timer(verbose);
timer.start();
int counter = 0;
// cf. prepare_asu_data()
double max_1_d = 1. / d_min;
int max_h = int(max_1_d / small.cell.ar);
int max_k = int(max_1_d / small.cell.br);
int max_l = int(max_1_d / small.cell.cr);
const gemmi::SpaceGroup* sg = small.find_spacegroup();
if (!sg)
sg = &gemmi::get_spacegroup_p1();
gemmi::ReciprocalAsu asu(sg);
gemmi::AsuData<std::complex<double>> asu_data;
gemmi::GroupOps gops = sg->operations();
for (int h = -max_h; h <= max_h; ++h)
for (int k = -max_k; k <= max_k; ++k)
for (int l = 0; l <= max_l; ++l) {
gemmi::Miller hkl{{h, k, l}};
if (!asu.is_in(hkl) || (hkl[0] == 0 && hkl[1] == 0 && hkl[2] == 0))
continue;
if (gops.is_systematically_absent(hkl))
continue;
double hkl_1_d2 = small.cell.calculate_1_d2(hkl);
if (hkl_1_d2 < max_1_d * max_1_d) {
auto value = calc.calculate_sf_from_small_structure(small, hkl);
if (mott_bethe)
value *= calc.mott_bethe_factor();
if (file.mode == RefFile::Mode::WriteMtz)
asu_data.v.push_back({hkl, value});
else
print_sf(value, hkl);
++counter;
}
}
if (verbose) {
fflush(stdout);
fprintf(stderr, "Calculated %d SFs in %g s.\n", counter, timer.count());
fflush(stderr);
}
if (file.mode == RefFile::Mode::WriteMtz) {
asu_data.unit_cell_ = small.cell;
asu_data.spacegroup_ = sg;
write_asudata_to_mtz(asu_data, file);
}
}
template<typename Table>
void compare_with_hkl(const gemmi::SmallStructure& small,
gemmi::StructureFactorCalculator<Table>& calc,
const RefFile& file,
bool verbose,
Comparator& comparator,
bool mott_bethe) {
namespace cif = gemmi::cif;
cif::Document hkl_doc = gemmi::read_cif_gz(file.path);
cif::Block& block = hkl_doc.blocks.at(0);
std::vector<std::string> tags =
{"index_h", "index_k", "index_l", "?F_calc", "?F_squared_calc"};
if (!file.f_label.empty()) {
tags.pop_back();
tags.back().replace(1, std::string::npos, file.f_label);
}
cif::Table table = block.find("_refln_", tags);
if (!table.ok())
gemmi::fail("_refln_index_ category not found in ", file.path);
int col = 0;
if (table.has_column(3))
col = 3;
else if (tags.size() > 4 && table.has_column(4))
col = 4;
if (col == 0) {
std::string msg;
if (file.f_label.empty())
msg = "Neither _refln_F_calc nor _refln_F_squared_calc";
else
msg = "_refln_" + file.f_label;
gemmi::fail(msg + " not found in: ", file.path);
}
bool use_sqrt = (col == 4 ||
file.f_label == "F_squared_calc" ||
file.f_label == "F_squared_meas");
if (verbose)
fprintf(stderr, "Checking %s_refln_%s from %s\n",
use_sqrt ? "sqrt of " : "", tags[col].c_str()+1, file.path);
gemmi::Miller hkl;
int missing = 0;
int negative = 0;
for (auto row : table) {
if (!row.has2(col)) {
missing++;
continue;
}
double f_from_file = NAN;
try {
for (int i = 0; i != 3; ++i)
hkl[i] = cif::as_int(row[i]);
f_from_file = cif::as_number(row[col]);
if (use_sqrt) {
if (f_from_file >= 0) {
f_from_file = std::sqrt(f_from_file);
} else {
negative++;
f_from_file = 0;
}
}
} catch(std::exception& e) {
fprintf(stderr, "Error in _refln_[] in %s: %s\n", file.path, e.what());
continue;
}
double f = std::abs(calc.calculate_sf_from_small_structure(small, hkl));
if (mott_bethe)
f *= calc.mott_bethe_factor();
comparator.add(f_from_file, f);
if (verbose)
printf(" (%d %d %d)\t%7.2f\t%8.3f \td=%5.2f\n",
hkl[0], hkl[1], hkl[2], f_from_file, f,
small.cell.calculate_d(hkl));
}
if (missing)
fprintf(stderr, "missing value in %d rows\n", missing);
if (negative)
fprintf(stderr, "negative value in %d rows\n", negative);
}
template<typename Table>
void compare_with_mtz(const gemmi::Model& model, const gemmi::UnitCell& cell,
gemmi::StructureFactorCalculator<Table>& calc,
const RefFile& file, bool verbose, Comparator& comparator,
bool mott_bethe) {
gemmi::Mtz mtz;
mtz.read_input(gemmi::MaybeGzipped(file.path), true);
gemmi::Mtz::Column* col = mtz.column_with_label(file.f_label);
if (!col)
gemmi::fail("MTZ file has no column with label: " + file.f_label);
gemmi::MtzDataProxy data_proxy{mtz};
for (size_t i = 0; i < data_proxy.size(); i += data_proxy.stride()) {
gemmi::Miller hkl = data_proxy.get_hkl(i);
double f_from_file = data_proxy.get_num(i + col->idx);
double f = std::abs(calc.calculate_sf_from_model(model, hkl));
if (mott_bethe)
f *= calc.mott_bethe_factor();
comparator.add(f_from_file, f);
if (verbose)
printf(" (%d %d %d)\t%7.2f\t%8.3f \td=%5.2f\n",
hkl[0], hkl[1], hkl[2], f_from_file, f, cell.calculate_d(hkl));
}
}
template<typename Table>
void process_with_table(bool use_st, gemmi::Structure& st, const gemmi::SmallStructure& small,
double wavelength, bool mott_bethe, const OptParser& p) {
const gemmi::UnitCell& cell = use_st ? st.cell : small.cell;
gemmi::StructureFactorCalculator<Table> calc(cell);
// assign f' given explicitly in a file
if (p.options[CifFp]) {
if (use_st) {
// _atom_type.scat_dispersion_real is almost never used,
// so for now we ignore it.
} else { // small molecule
if (p.options[Verbose])
fprintf(stderr, "Using f' read from cif file (%u atom types)\n",
(unsigned) small.atom_types.size());
for (const gemmi::SmallStructure::AtomType& atom_type : small.atom_types)
calc.addends.set(atom_type.element, (float)atom_type.dispersion_real);
}
}
auto present_elems = use_st ? st.models[0].present_elements()
: small.present_elements();
if (present_elems[(int)gemmi::El::X])
gemmi::fail("unknown element. Add --unknown=O to treat unknown atoms as oxygen.");
for (size_t i = 1; i != present_elems.size(); ++i)
if (present_elems[i] && !Table::has((gemmi::El)i))
gemmi::fail("Missing form factor for element ", element_name((gemmi::El)i));
if (wavelength > 0) {
double energy = gemmi::hc() / wavelength;
for (int z = 1; z <= 92; ++z)
if (present_elems[z] && calc.addends.values[z] == 0) {
calc.addends.values[z] = (float) gemmi::cromer_liberman(z, energy, nullptr);
}
}
if (mott_bethe)
calc.addends.subtract_z();
// handle option --hkl
for (const option::Option* opt = p.options[Hkl]; opt; opt = opt->next()) {
std::vector<int> hkl_ = parse_comma_separated_ints(opt->arg);
gemmi::Miller hkl{{hkl_[0], hkl_[1], hkl_[2]}};
if (p.options[Verbose])
fprintf(stderr, "hkl=(%d %d %d) -> d=%g\n", hkl[0], hkl[1], hkl[2],
cell.calculate_d(hkl));
std::complex<double> sf;
if (use_st)
sf = calc.calculate_sf_from_model(st.models[0], hkl);
else
sf = calc.calculate_sf_from_small_structure(small, hkl);
if (mott_bethe)
sf *= calc.mott_bethe_factor();
print_sf(sf, hkl);
}
RefFile file;
if (p.options[Test]) {
file.mode = RefFile::Mode::Test;
file.path = p.options[Test].arg;
} else if (p.options[Compare]) {
file.mode = RefFile::Mode::Compare;
file.path = p.options[Compare].arg;
} else if (p.options[ToMtz]) {
file.mode = RefFile::Mode::WriteMtz;
file.path = p.options[ToMtz].arg;
}
if (p.options[FLabel])
file.f_label = p.options[FLabel].arg;
// we leave f_label empty for use in compare_with_hkl()
else if (use_st || file.mode == RefFile::Mode::WriteMtz)
file.f_label = "FC";
if (p.options[PhiLabel])
file.phi_label = p.options[PhiLabel].arg;
else
file.phi_label = "PHIC";
using Real = float;
gemmi::AsuData<gemmi::ValueSigma<Real>> scale_to;
if (p.options[ScaleTo]) {
std::string path = p.options[ScaleTo].arg;
std::string flabel = "F";
std::string siglabel = "SIGF";
size_t sep2 = path.rfind(':');
if (sep2 != std::string::npos && sep2 != 0) {
size_t sep = path.rfind(':', sep2 - 1);
if (sep == std::string::npos)
std::swap(sep, sep2);
flabel = path.substr(sep+1, sep2 - (sep+1));
if (sep2 != std::string::npos)
siglabel = path.substr(sep2+1);
path.resize(sep);
}
double sigma_cutoff = 0;
if (p.options[SigmaCutoff])
sigma_cutoff = std::atof(p.options[SigmaCutoff].arg);
gemmi::Mtz mtz;
mtz.read_input(gemmi::MaybeGzipped(path), true);
if (siglabel.empty()) {
scale_to.load_values<2>(gemmi::MtzDataProxy{mtz}, {flabel, flabel});
for (auto& hkl_value : scale_to.v)
hkl_value.value.sigma = std::sqrt(hkl_value.value.sigma);
} else {
scale_to.load_values<2>(gemmi::MtzDataProxy{mtz}, {flabel, siglabel});
size_t size_before = scale_to.size();
vector_remove_if(scale_to.v, [=](const gemmi::HklValue<gemmi::ValueSigma<Real>>& x) {
return x.value.value <= sigma_cutoff * x.value.sigma;
});
if (p.options[Verbose])
fprintf(stderr, "Sigma cutoff (F/sigF > %g) excluded %zu out of %zu points.\n",
sigma_cutoff, size_before - scale_to.size(), size_before);
}
}
// handle option --dmin
if (p.options[Dmin]) {
double d_min = std::atof(p.options[Dmin].arg);
if (use_st) {
gemmi::DensityCalculator<Table, Real> dencalc;
dencalc.d_min = d_min;
if (p.options[Rate])
dencalc.rate = std::atof(p.options[Rate].arg);
if (p.options[RCut])
dencalc.cutoff = (float) std::atof(p.options[RCut].arg);
dencalc.addends = calc.addends;
if (p.options[Blur]) {
dencalc.blur = std::atof(p.options[Blur].arg);
} else if (dencalc.rate < 3) {
// ITfC vol B section 1.3.4.4.5 has formula
// B = log Q / (sigma * (sigma - 1) * d*_max ^2)
// where Q is quality factor, sigma is the oversampling rate.
// This value is not optimal.
// The optimal value would depend on the distribution of B-factors
// and on the atomic cutoff radius, and probably it would be too
// hard to estimate. Here we use the same formula as in Refmac.
dencalc.set_refmac_compatible_blur(st.models[0]);
if (p.options[Verbose])
fprintf(stderr, "B_min=%g, B_add=%g\n",
gemmi::get_minimum_b(st.models[0]), dencalc.blur);
}
gemmi::AtomicRadiiSet radii_choice = gemmi::AtomicRadiiSet::VanDerWaals;
if (p.options[RadiiSet]) {
char c = p.options[RadiiSet].arg[0];
if (c == 'v')
radii_choice = gemmi::AtomicRadiiSet::VanDerWaals;
else if (c == 'c')
radii_choice = gemmi::AtomicRadiiSet::Cctbx;
else if (c == 'r')
radii_choice = gemmi::AtomicRadiiSet::Refmac;
}
gemmi::SolventMasker masker(radii_choice);
if (p.options[Rprobe])
masker.rprobe = std::atof(p.options[Rprobe].arg);
if (p.options[Rshrink])
masker.rshrink = std::atof(p.options[Rshrink].arg);
gemmi::Scaling<Real> scaling(cell, st.find_spacegroup());
if (p.options[Ksolv] || p.options[Bsolv] || scale_to.size() != 0) {
scaling.use_solvent = true;
if (p.options[Ksolv])
scaling.k_sol = std::atof(p.options[Ksolv].arg);
if (p.options[Bsolv])
scaling.b_sol = std::atof(p.options[Bsolv].arg);
}
if (p.options[Baniso]) {
char* endptr = nullptr;
gemmi::SMat33<double> b_aniso;
b_aniso.u11 = std::strtod(p.options[Baniso].arg, &endptr);
b_aniso.u22 = std::strtod(endptr + 1, &endptr);
b_aniso.u33 = std::strtod(endptr + 1, &endptr);
b_aniso.u12 = std::strtod(endptr + 1, &endptr);
b_aniso.u13 = std::strtod(endptr + 1, &endptr);
b_aniso.u23 = std::strtod(endptr + 1, &endptr);
scaling.set_b_overall(b_aniso);
}
const char* map_file = p.options[WriteMap] ? p.options[WriteMap].arg : nullptr;
process_with_fft(st, dencalc, mott_bethe, masker, scaling,
p.options[Verbose], file, scale_to, map_file);
} else {
if (p.options[Rate] || p.options[RCut] || p.options[Blur] ||
p.options[Test])
gemmi::fail("Small molecule SFs are calculated directly. Do not use any\n"
"of the FFT-related options: --rate, --blur, --rcut, --test.");
print_structure_factors_sm(small, calc, mott_bethe, d_min, p.options[Verbose], file);
}
// handle option --compare
} else if (file.mode == RefFile::Mode::Compare) {
Comparator comparator;
if (use_st)
compare_with_mtz(st.models[0], st.cell, calc, file, p.options[Verbose],
comparator, mott_bethe);
else
compare_with_hkl(small, calc, file, p.options[Verbose], comparator, mott_bethe);
print_to_stderr(comparator);
fprintf(stderr, " sum(F^2)_ratio=%g\n", comparator.scale());
}
}
void process(const std::string& input, const OptParser& p) {
// read (Small)Structure
gemmi::Structure st = gemmi::read_structure_gz(input);
gemmi::SmallStructure small;
bool use_st = !st.models.empty();
if (!use_st) {
if (gemmi::giends_with(input, ".cif"))
small = gemmi::make_small_structure_from_block(
gemmi::read_cif_gz(input).sole_block());
if (small.sites.empty() ||
// COD can have a row of nulls as a placeholder (e.g. 2211708)
(small.sites.size() == 1 && small.sites[0].element == gemmi::El::X))
gemmi::fail("no atoms in the file");
// SM CIF files specify full occupancy for atoms on special positions.
// We need to adjust it for symmetry calculations.
small.change_occupancies_to_crystallographic();
}
if (!p.options[Dmin]) {
for (OptionIndex opt : {ToMtz, WriteMap, ScaleTo, Ksolv, Bsolv,
RadiiSet, Rprobe, Rshrink})
if (p.options[opt])
gemmi::fail("Option ", p.options[opt].name, " works only with --dmin");
}
if (!use_st) {
for (OptionIndex opt : {WriteMap, ScaleTo, Ksolv, Bsolv, RadiiSet, Rprobe, Rshrink})
if (p.options[opt])
gemmi::fail("Option ", p.options[opt].name, " is only used in density-FFT "
"route which is only used for macromolecular structures");
}
if (p.options[NoAniso]) {
if (use_st) {
for (gemmi::CRA cra : st.models[0].all())
cra.atom->aniso.u11 = cra.atom->aniso.u22 = cra.atom->aniso.u33 = 0;
} else {
for (gemmi::SmallStructure::Site& site : small.sites)
site.aniso.u11 = site.aniso.u22 = site.aniso.u33 = 0;
}
}
double wavelength = 0;
if (p.options[Wavelength]) {
wavelength = std::atof(p.options[Wavelength].arg);
} else {
if (use_st) {
// reading wavelength from PDB and mmCIF files needs to be revisited
//if (!st.crystals.empty() && !st.crystals[0].diffractions.empty())
// wavelength_list = st.crystals[0].diffractions[0].wavelengths;
} else {
wavelength = small.wavelength;
}
}
if (wavelength < 0)
gemmi::fail("wavelength should not be negative");
if (p.options[Unknown]) {
gemmi::El new_el = gemmi::find_element(p.options[Unknown].arg);
if (new_el == gemmi::El::X)
gemmi::fail("--unknown must specify chemical element symbol.");
if (use_st) {
for (gemmi::Chain& chain : st.models[0].chains)
for (gemmi::Residue& residue : chain.residues)
for (gemmi::Atom& atom : residue.atoms)
if (atom.element == gemmi::El::X)
atom.element = new_el;
} else {
for (gemmi::SmallStructure::Site& atom : small.sites)
if (atom.element == gemmi::El::X)
atom.element = new_el;
}
}
if (use_st && st.ncs_not_expanded())
gemmi::expand_ncs(st, gemmi::HowToNameCopiedChain::Dup);
if (use_st && !st.cell.is_crystal()) {
double margin = 10.;
if (p.options[Margin])
margin = std::atof(p.options[Margin].arg);
gemmi::Box<gemmi::Position> box;
expand_box(st.models[0], box);
gemmi::Position size = box.get_size();
st.cell.set(size.x + margin, size.y + margin, size.z + margin, 90, 90, 90);
if (p.options[Verbose]) {
fprintf(stderr, "Unit cell set to %g x %g x %g\n", st.cell.a, st.cell.b, st.cell.c);
fflush(stderr);
}
}
char table = p.options[For] ? p.options[For].arg[0] : 'x';
if (p.options[CifFp] && table != 'x')
gemmi::fail("Electron scattering has no dispersive part (--ciffp)");
if (table == 'x' || table == 'm') {
if (p.options[NormalizeIt92])
gemmi::IT92<float>::normalize();
if (table == 'm')
gemmi::IT92<float>::ignore_charge = true;
process_with_table<gemmi::IT92<float>>(use_st, st, small, wavelength,
table == 'm', p);
} else if (table == 'e') {
process_with_table<gemmi::C4322<float>>(use_st, st, small, 0., false, p);
} else if (table == 'n') {
process_with_table<gemmi::Neutron92<double>>(use_st, st, small, 0., false, p);
}
}
} // anonymous namespace
int GEMMI_MAIN(int argc, char **argv) {
OptParser p(EXE_NAME);
p.simple_parse(argc, argv, Usage);
p.check_exclusive_group({ToMtz, Test, Compare});
p.require_input_files_as_args();
try {
for (int i = 0; i < p.nonOptionsCount(); ++i) {
std::string input = p.coordinate_input_file(i);
if (p.options[Verbose]) {
fprintf(stderr, "Reading file %s ...\n", input.c_str());
fflush(stderr);
}
process(input, p);
}
} catch (std::exception& e) {
std::fprintf(stderr, "ERROR: %s\n", e.what());
return 1;
}
return 0;
}
|