File: validate_mon.cpp

package info (click to toggle)
gemmi 0.6.5%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 5,836 kB
  • sloc: cpp: 54,719; python: 4,743; ansic: 3,972; sh: 384; makefile: 73; f90: 42; javascript: 12
file content (298 lines) | stat: -rw-r--r-- 11,777 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
// Copyright 2018 Global Phasing Ltd.
//
// Part of gemmi-validate that does extra validation for cif files from
// the Refmac monomer dictionary ("gemmi validate --monomer").

#include "validate_mon.h"
#include <stdio.h>
#include <exception>
#include "gemmi/chemcomp.hpp"     // for ChemComp
#include "gemmi/chemcomp_xyz.hpp" // for make_residue_from_chemcomp_block
#include "gemmi/topo.hpp"         // for Topo
#include "gemmi/calculate.hpp"    // for find_best_plane

namespace cif = gemmi::cif;
using gemmi::Restraints;
using gemmi::Topo;
using gemmi::ChemComp;

namespace {

// some rules for the number of bonds (currently only for H and P)
void check_valency(const ChemComp& cc) {
  for (const ChemComp::Atom& atom : cc.atoms) {
    if (cc.atoms.size() == 1)
      continue;
    float valency = 0.0f;
    for (const Restraints::Bond& bond : cc.rt.bonds)
      if (bond.id1 == atom.id || bond.id2 == atom.id)
        valency += order_of_bond_type(bond.type);
    bool ok = valency >= 0.5f;
    valency -= atom.charge;
    if (atom.is_hydrogen()) {
      ok = std::round(valency) == 1.0;
    } else if (atom.el == gemmi::El::P) {
      ok = (valency == 3.0f || valency == 5.0f || valency == 5.5f);
    }
    if (!ok)
      printf("%s [valency] %s (%s) has bond order %g\n", cc.name.c_str(),
             atom.id.c_str(), element_name(atom.el), valency);
  }
}

void check_bond_angle_consistency(const ChemComp& cc) {
  const std::string tag = cc.name + " [restr]";
  for (const Restraints::Angle& angle : cc.rt.angles) {
    if (!cc.rt.are_bonded(angle.id1, angle.id2) ||
        !cc.rt.are_bonded(angle.id2, angle.id3))
      printf("%s angle %s with non-bonded atoms\n", tag.c_str(),
             angle.str().c_str());
    if (angle.value < 20)
      printf("%s angle %s with low value: %g\n", tag.c_str(),
             angle.str().c_str(), angle.value);
  }
  for (const Restraints::Torsion& tor : cc.rt.torsions) {
    if (!cc.rt.are_bonded(tor.id1, tor.id2) ||
        !cc.rt.are_bonded(tor.id2, tor.id3) ||
        !cc.rt.are_bonded(tor.id3, tor.id4))
      printf("%s torsion %s with non-bonded atoms\n", tag.c_str(),
             tor.str().c_str());
  }
}

template <typename T>
bool check_esd(const std::string& name, const T* restr) {
  if (restr->esd <= 0.) {
    printf("%s [esd] %s %s has non-positive esd: %g\n", name.c_str(),
           restr->what(), restr->str().c_str(), restr->esd);
    return false;
  }
  return true;
}

void print_outliers(const Topo& topo, const std::string& name, double z_score) {
  for (const Topo::Bond& t : topo.bonds) {
    if (!check_esd(name, t.restr))
      continue;
    double value = t.calculate();
    if (std::abs(value - t.restr->value) > z_score * t.restr->esd)
      printf("%s [atom.xyz] bond %s should be %g (esd %g) but is %.2f\n", name.c_str(),
             t.restr->str().c_str(), t.restr->value, t.restr->esd, value);
  }
  for (const Topo::Angle& t : topo.angles) {
    if (!check_esd(name, t.restr))
      continue;
    double value = gemmi::deg(t.calculate());
    if (gemmi::angle_abs_diff(value, t.restr->value) > z_score * t.restr->esd)
      printf("%s [atom.xyz] angle %s should be %g (esd %g) but is %.2f\n", name.c_str(),
             t.restr->str().c_str(), t.restr->value, t.restr->esd, value);
  }
  for (const Topo::Torsion& t : topo.torsions) {
    if (!check_esd(name, t.restr))
      continue;
    double value = gemmi::deg(t.calculate());
    double full = 360. / std::max(1, t.restr->period);
    if (gemmi::angle_abs_diff(value, t.restr->value, full) > z_score * t.restr->esd)
      printf("%s [atom.xyz] torsion %s should be %g (period %d, esd %g) but is %.2f\n",
             name.c_str(),
             t.restr->str().c_str(), t.restr->value, t.restr->period, t.restr->esd, value);
  }
  for (const Topo::Chirality& t : topo.chirs) {
    double value = t.calculate();
    if (t.restr->is_wrong(value))
      printf("%s [atom.xyz] chir %s should be %s but is %.2f\n", name.c_str(),
             t.restr->str().c_str(), gemmi::chirality_to_string(t.restr->sign),
             value);
  }
  for (const Topo::Plane& t : topo.planes) {
    if (!check_esd(name, t.restr))
      continue;
    auto coeff = find_best_plane(t.atoms);
    for (const gemmi::Atom* atom : t.atoms) {
      double dist = gemmi::get_distance_from_plane(atom->pos, coeff);
      if (dist > z_score * t.restr->esd)
        printf("%s [atom.xyz] plane %s has atom %s in a distance %.2f\n", name.c_str(),
               t.restr->str().c_str(), atom->name.c_str(), dist);
    }
  }
}

struct HeavyAtom {
  const ChemComp::Atom* atom;
  std::vector<std::string> hydrogens;
  HeavyAtom(const ChemComp::Atom* atom_) : atom(atom_) {}
  bool operator<(const HeavyAtom& o) const { return atom->id < o.atom->id; }
};

struct SortedAtoms {
  std::vector<HeavyAtom> heavys;
  std::map<std::string, const Restraints::Bond*> bond_map;
};

SortedAtoms sorted_heavy_atoms(const ChemComp& cc) {
  SortedAtoms sa;
  std::map<std::string, int> hydrogen_names;
  for (const ChemComp::Atom& a : cc.atoms) {
    if (a.is_hydrogen())
      hydrogen_names.emplace(a.id, 0);
    else
      sa.heavys.emplace_back(&a);
  }
  std::sort(sa.heavys.begin(), sa.heavys.end());
  auto process_h = [&](const std::string& h_name, const std::string& parent_name) -> bool {
    auto h = hydrogen_names.find(h_name);
    if (h == hydrogen_names.end())
      return false;
    if (h->second != 0)
      gemmi::fail("2+ bonds for hydrogen ", h_name, " in ", cc.name);
    h->second = 1;
    auto parent = std::find_if(sa.heavys.begin(), sa.heavys.end(),
                               [&](const HeavyAtom& a) { return a.atom->id == parent_name; });
    if (parent == sa.heavys.end())
      gemmi::fail("missing parent atom for hydrogen ", h_name, " in ", cc.name);
    parent->hydrogens.push_back(h_name);
    return true;
  };

  for (const Restraints::Bond& bond : cc.rt.bonds) {
    if (process_h(bond.id2.atom, bond.id1.atom) ||
        process_h(bond.id1.atom, bond.id2.atom)) {
      if (bond.type != gemmi::BondType::Single)
        printf("%s [ccd] bond %s (hydrogen atom) is not SINGle\n",
               cc.name.c_str(), bond.str().c_str());
    } else {
      auto result = sa.bond_map.emplace(bond.lexicographic_str(), &bond);
      if (!result.second)
        printf("%s [ccd:bond]   duplicated bond %s\n", cc.name.c_str(),
               result.first->first.c_str());
    }
  }
  for (const auto& h : hydrogen_names)
    if (h.second == 0)
      gemmi::fail("hydrogen atom without any bond: ", h.first, " in ", cc.name);
  for (HeavyAtom& heavy : sa.heavys)
    std::sort(heavy.hydrogens.begin(), heavy.hydrogens.end());
  return sa;
}

// both arguments are sorted vectors
bool is_subset(const std::vector<std::string>& subset,
               const std::vector<std::string>& superset) {
  size_t i = 0, j = 0;
  for (;;) {
    if (i == subset.size())
      return true;
    if (j == superset.size())
      return false;
    if (subset[i] == superset[j])
      ++i;
    ++j;
  }
  gemmi::unreachable();
}

void check_consistency_with_ccd(const ChemComp& lib, const cif::Block& ccd_block,
                                bool verbose) {
  const char* name = lib.name.c_str();
  const ChemComp ccd = gemmi::make_chemcomp_from_block(ccd_block);

  // compare heavy atoms
  bool same_atoms = true;
  SortedAtoms lib_sa = sorted_heavy_atoms(lib);
  SortedAtoms ccd_sa = sorted_heavy_atoms(ccd);
  if (lib_sa.heavys.size() == ccd_sa.heavys.size()) {
    for (size_t i = 0; i != lib_sa.heavys.size(); ++i) {
      if (lib_sa.heavys[i].atom->id == ccd_sa.heavys[i].atom->id) {
        const HeavyAtom& lib_heavy = lib_sa.heavys[i];
        const HeavyAtom& ccd_heavy = ccd_sa.heavys[i];
        const char* atom_id = lib_heavy.atom->id.c_str();
        if (lib_heavy.atom->el != ccd_heavy.atom->el)
          printf("%s [ccd] different element for %s\n", name, atom_id);
        if (lib_heavy.hydrogens.size() != ccd_heavy.hydrogens.size())
          printf("%s [ccd] different protonation of %s, #H=%zu (%zu in CCD)\n",
                 name, atom_id, lib_heavy.hydrogens.size(), ccd_heavy.hydrogens.size());
        const auto* shorter = &lib_heavy.hydrogens;
        const auto* longer = &ccd_heavy.hydrogens;
        bool ccd_less = (longer->size() < shorter->size());
        if (ccd_less)
          std::swap(shorter, longer);
        if (is_subset(*shorter, *longer)) {
          if (ccd_less)
            for (const std::string& h : lib_heavy.hydrogens)
              for (const HeavyAtom& heavy : ccd_sa.heavys) {
                if (&heavy != &ccd_heavy && gemmi::in_vector(h, heavy.hydrogens))
                  printf("%s [ccd] wrong parent for hydrogen %s: %s (%s in CCD)\n",
                         name, h.c_str(), atom_id, heavy.atom->id.c_str());
              }
        } else {
          printf("%s [ccd] different names of hydrogens on %s: %s  vs  %s\n",
                 name, atom_id,
                 gemmi::join_str(lib_heavy.hydrogens, ' ').c_str(),
                 gemmi::join_str(ccd_heavy.hydrogens, ' ').c_str());
        }
      } else {
        printf("%s [ccd] different names of heavy atoms\n", name);
        same_atoms = false;
        break;
      }
    }
  } else {
    printf("%s [ccd] different number of heavy atoms: %zu (%zu in CCD)\n", name,
           lib_sa.heavys.size(), ccd_sa.heavys.size());
    same_atoms = false;
  }
  if (!same_atoms && verbose) {
    auto getter = [](const HeavyAtom& a) { return a.atom->id; };
    printf("%s [ccd]   %s\n", name, gemmi::join_str(lib_sa.heavys, ' ', getter).c_str());
    printf("%s [ccd]   %s\n", name, gemmi::join_str(ccd_sa.heavys, ' ', getter).c_str());
    cif::Table audit = const_cast<cif::Block&>(ccd_block)
                         .find("_pdbx_chem_comp_audit.", {"action_type", "date"});
    int audit_len = audit.length();
    if (audit_len > 0) {
      cif::Table::Row last_row = audit[audit_len-1];
      printf("%s [ccd]   Last modification: %s  %s\n", name,
             last_row[1].c_str(), last_row.str(0).c_str());
    } else {
      printf("%s [ccd]   missing _pdbx_chem_comp_audit in CCD\n", name);
    }
  }

  // check bonds between heavy atoms
  for (const auto& lib_bond : lib_sa.bond_map) {
    const std::string& bond_str = lib_bond.first;
    auto ccd_iter = ccd_sa.bond_map.find(bond_str);
    if (ccd_iter == ccd_sa.bond_map.end()) {
      printf("%s [ccd:bond]   extra bond %s\n", name, bond_str.c_str());
      continue;
    }
    if (lib_bond.second->type != ccd_iter->second->type && verbose)
      printf("%s [ccd:bond]   %s bond type is: %s (%s in CCD)\n", name,
             bond_str.c_str(),
             gemmi::bond_type_to_string(lib_bond.second->type),
             gemmi::bond_type_to_string(ccd_iter->second->type));
    ccd_sa.bond_map.erase(ccd_iter);
  }
  for (const auto& ccd_iter : ccd_sa.bond_map)
    printf("%s [ccd:bond]   missing bond %s\n", name, ccd_iter.first.c_str());
}

}  // anonymous namespace

void check_monomer(const cif::Block& block, double z_score) {
  gemmi::ChemComp cc = gemmi::make_chemcomp_from_block(block);
  check_valency(cc);
  check_bond_angle_consistency(cc);
  if (z_score != +INFINITY) {
    // check consistency of _chem_comp_atom.x/y/z with restraints
    gemmi::Residue res = gemmi::make_residue_from_chemcomp_block(block,
                                                gemmi::ChemCompModel::Xyz);
    Topo topo;
    topo.apply_restraints(cc.rt, res, nullptr, gemmi::Asu::Same, '\0', '\0', false);
    print_outliers(topo, cc.name, z_score);
  }
}

void compare_monomer_with_ccd(const cif::Block& lib_block, const cif::Block& ccd_block,
                              bool verbose) {
  check_consistency_with_ccd(gemmi::make_chemcomp_from_block(lib_block), ccd_block, verbose);
}