1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
|
// Copyright 2018 Global Phasing Ltd.
//
// B-factor model testing
#include <gemmi/neighbor.hpp>
#include <gemmi/elem.hpp> // for is_hydrogen
#include <gemmi/math.hpp> // for Correlation
#include <gemmi/resinfo.hpp> // for find_tabulated_residue
#include <gemmi/polyheur.hpp> // for assign_subchains
#include <gemmi/fileutil.hpp> // for file_open
#include <gemmi/pdb_id.hpp> // for expand_if_pdb_code
#include <gemmi/mmread_gz.hpp> // for read_structure_gz
#define GEMMI_PROG wcn
#include "options.h"
#include <stdio.h>
#include <cstdlib> // for strtof, atoi
#include <algorithm> // for sort
using namespace gemmi;
namespace {
enum OptionIndex { FromFile=4, ListResidues, MinDist, MaxDist,
Exponent, Blur, Rom, ChainName, Sanity, SideChains,
NoCrystal, OmitEnds, PrintRes, XyOut };
struct WcnArg {
static option::ArgStatus SideChains(const option::Option& option, bool msg) {
return Arg::Choice(option, msg, {"include", "exclude", "only"});
}
};
const option::Descriptor Usage[] = {
{ NoOp, 0, "", "", Arg::None,
"Usage:\n " EXE_NAME " [options] INPUT[...]\n"
"Calculation of local density / contact numbers: WCN, CN, ACN, LDM, etc."},
CommonUsage[Help],
CommonUsage[Version],
CommonUsage[Verbose],
{ FromFile, 0, "f", "file", Arg::Required,
" -f, --file=FILE \tObtain paths or PDB IDs from FILE, one per line." },
{ ListResidues, 0, "l", "list", Arg::None,
" -l, --list \tList per-residue values." },
{ MinDist, 0, "", "min-dist", Arg::Float,
" --min-dist=DIST \tMinimum distance for \"contacts\" (default: 0.8)." },
{ MaxDist, 0, "", "cutoff", Arg::Float,
" --cutoff=DIST \tMaximum distance for \"contacts\" (default: 15)." },
{ Exponent, 0, "", "pow", Arg::Float,
" --pow=P \tExponent in the weighting (default: 2)." },
{ Blur, 0, "", "blur", Arg::Float,
" --blur=SIGMA \tApply Gaussian smoothing of predicted B-factors." },
{ Rom, 0, "", "rom", Arg::None,
" --rom \tRotation only model: |pos-ctr_of_chain|^P instead of WCN." },
{ ChainName, 0, "", "chain", Arg::Required,
" --chain=CHAIN \tUse only one chain from the INPUT file." },
{ Sanity, 0, "", "sanity", Arg::None,
" --sanity \tRun sanity checks first." },
{ SideChains, 0, "", "sidechains", WcnArg::SideChains,
" --sidechains=X \tOne of: include, exclude, only (default: include)." },
{ NoCrystal, 0, "", "no-crystal", Arg::None,
" --no-crystal \tIgnore crystal symmetry and intermolecular contacts." },
{ OmitEnds, 0, "", "omit-ends", Arg::Int,
" --omit-ends=N \tIgnore N terminal residues from each chain end." },
{ PrintRes, 0, "", "print-res", Arg::None,
" --print-res \tPrint also resolution and R-free." },
{ XyOut, 0, "", "xy-out", Arg::Required,
" --xy-out=DIR \tWrite DIR/name.xy files with WCN and B(exper)." },
{ 0, 0, 0, 0, 0, 0 }
};
struct Params {
double min_dist = 0.8;
double max_dist = 15.0;
double exponent = 2.0;
double blur = 0.0;
std::string chain_name;
bool rotation_only = false;
char sidechains = 'i';
int omit_ends = 0;
std::string xy_out;
};
Position calculate_center_of_mass(const ResidueSpan& residue_span) {
double mass = 0;
Vec3 sum;
for (const Residue& res : residue_span)
for (const Atom& atom : res.atoms) {
double w = atom.element.weight() * atom.occ;
sum += atom.pos * w;
mass += w;
}
return Position(sum / mass);
}
bool check_sanity(const Model& model) {
for (const Chain& chain : model.chains)
for (const Residue& res : chain.residues)
for (const Atom& atom : res.atoms) {
if (atom.occ < 0 || atom.occ > 1) {
fprintf(stderr, "WRONG: atom %s in %s has occupancy: %g\n",
atom.name.c_str(), res.str().c_str(), atom.occ);
return false;
}
if (atom.b_iso < 0 ||
(atom.b_iso == 0 && !atom.is_hydrogen() && atom.occ != 0)) {
fprintf(stderr, "WRONG: atom %s in %s has B_iso: %g\n",
atom.name.c_str(), res.str().c_str(), atom.b_iso);
return false;
}
}
return true;
}
// ranks are from 1 to data.size()
std::vector<int> get_ranks(const std::vector<double>& data) {
std::vector<int> indices(data.size());
for (size_t i = 0; i != indices.size(); ++i)
indices[i] = (int) i;
std::sort(indices.begin(), indices.end(),
[&data](int a, int b) { return data[a] < data[b]; });
std::vector<int> result(data.size());
for (size_t i = 0; i < indices.size(); ++i)
result[indices[i]] = (int) i + 1;
return result;
}
template<typename T>
Correlation calculate_correlation(const std::vector<T>& a,
const std::vector<T>& b) {
assert(a.size() == b.size());
Correlation cc;
for (size_t i = 0; i != a.size(); ++i)
cc.add_point(a[i], b[i]);
return cc;
}
struct Result {
int n_residues;
int n;
double b_mean;
double b_stddev;
double cc;
double rank_cc;
double mean_abs_dev;
double relative_mean_abs_dev;
};
double calculate_weight(double dist_sq, const Params& params) {
if (params.exponent == 2.0) // canonical WCN
return 1.0 / dist_sq;
if (params.exponent == 0.0) // CN (a.k.a ACN)
return 1.0;
return std::pow(dist_sq, -0.5f * params.exponent);
}
// CA,N,C,O
bool is_protein_backbone(const std::string& name) {
switch (name.size()) {
case 1: return name[0] == 'N' || name[0] == 'C' || name[0] == 'O';
case 2: return name[0] == 'C' && name[1] == 'A';
default: return false;
}
}
Result test_bfactor_models(Structure& st, const Params& params) {
Model& model = st.first_model();
// prepare cell lists for neighbour search
std::unique_ptr<NeighborSearch> ns;
if (!params.rotation_only || params.blur != 0) {
ns.reset(new NeighborSearch(model, st.cell, params.max_dist));
for (int n_ch = 0; n_ch != (int) model.chains.size(); ++n_ch) {
const Chain& chain = model.chains[n_ch];
for (int n_res = 0; n_res != (int) chain.residues.size(); ++n_res) {
const Residue& res = chain.residues[n_res];
if (find_tabulated_residue(res.name).is_buffer_or_water())
continue;
for (int n_atom = 0; n_atom != (int) res.atoms.size(); ++n_atom) {
const Atom& atom = res.atoms[n_atom];
if (!atom.is_hydrogen())
ns->add_atom(atom, n_ch, n_res, n_atom);
}
}
}
}
// calculate B-factor predictor
std::vector<double> b_exper;
std::vector<double> b_predict;
std::vector<const Atom*> atom_ptr;
int n_residues = 0;
for (Chain& chain : model.chains) {
if (!params.chain_name.empty() && chain.name != params.chain_name)
continue;
ResidueSpan polymer = chain.get_polymer();
if (polymer.size() <= 2 * (size_t) params.omit_ends)
continue;
Position com = calculate_center_of_mass(polymer);
auto p_end = polymer.end() - params.omit_ends;
for (auto res = polymer.begin() + params.omit_ends; res != p_end; ++res) {
++n_residues;
for (Atom& atom : res->atoms) {
if (is_hydrogen(atom.element) || atom.occ == 0.0f)
continue;
if ((params.sidechains == 'e' && !is_protein_backbone(atom.name)) ||
(params.sidechains == 'o' && is_protein_backbone(atom.name)))
continue;
double r2 = atom.pos.dist_sq(com);
double value;
if (params.rotation_only) {
if (params.exponent == 2)
value = r2;
else
value = std::pow(r2, 0.5 * params.exponent);
} else {
double wcn = 0;
ns->for_each(atom.pos, atom.altloc, params.max_dist,
[&](const NeighborSearch::Mark& m, double dist_sq) {
if (dist_sq > sq(params.min_dist)) {
CRA cra = m.to_cra(model);
double weight = calculate_weight(dist_sq, params);
// if an atom is one of multiple conformations we iterate here
// only over other atoms of the same conformation (and atoms
// with no altloc) so we don't weight by occupancy.
if (atom.altloc == '\0')
weight *= cra.atom->occ;
wcn += weight;
}
});
if (wcn == 0.0) {
fprintf(stderr, "Warning: lonely atom %s %s %s\n",
chain.name.c_str(), res->str().c_str(), atom.name.c_str());
continue;
}
value = 1 / wcn;
}
b_exper.push_back(atom.b_iso);
b_predict.push_back(value);
// re-purposing u11, u22 and name
atom.flag = 1;
atom.aniso.u11 = (float) value;
atom.aniso.u22 = (float) r2;
std::string names = chain.name;
names += '\t';
names += res->seqid.str();
names += '\t';
names += atom.name;
atom.name = std::move(names);
atom_ptr.push_back(&atom);
}
}
}
// smoothing - average weighted by Gaussian(dist)
if (params.blur > 0) {
double mult = -0.5 / (params.blur * params.blur);
for (size_t i = 0; i != atom_ptr.size(); ++i) {
const Atom& atom = *atom_ptr[i];
double b_sum = 0;
double weight_sum = 0;
ns->for_each(atom.pos, atom.altloc, 3 * params.blur,
[&](const NeighborSearch::Mark& m, double dist_sq) {
const_CRA cra = m.to_cra(model);
if (cra.atom->flag) {
double weight = std::exp(mult * dist_sq);
if (atom.altloc == '\0' && cra.atom != &atom)
weight *= cra.atom->occ;
b_sum += weight * cra.atom->aniso.u11;
weight_sum += weight;
}
});
b_predict[i] = b_sum / weight_sum;
}
}
// optionally, write xy file
if (!params.xy_out.empty()) {
std::string path = params.xy_out + "/" + st.name;
if (!params.chain_name.empty())
path += "-" + params.chain_name;
path += ".xy";
auto f = gemmi::file_open(path.c_str(), "w");
fprintf(f.get(), "WCN\tB\tr2\tchain\tseqid\tatom\telem\n");
for (size_t i = 0; i != b_predict.size(); ++i)
fprintf(f.get(), "%g\t%g\t%.2f\t%s\t%s\n",
b_predict[i], b_exper[i],
atom_ptr[i]->aniso.u22, // squared distance to the center of mass
// Atom::name was used here to store also chain and seqid
atom_ptr[i]->name.c_str(),
atom_ptr[i]->element.name());
}
// calculate statistics
Correlation cc = calculate_correlation(b_predict, b_exper);
Correlation rank_cc = calculate_correlation(get_ranks(b_predict),
get_ranks(b_exper));
Result r;
r.b_mean = cc.mean_y;
r.b_stddev = std::sqrt(cc.y_variance());
r.n = (int) b_exper.size();
r.cc = cc.coefficient();
r.rank_cc = rank_cc.coefficient();
{
double slope = cc.slope();
double intercept = cc.intercept();
double a = 0, b = 0;
for (size_t i = 0; i != b_exper.size(); ++i) {
double diff = b_predict[i] * slope + intercept - b_exper[i];
a += std::abs(diff);
b += std::abs(b_exper[i] - cc.mean_y);
//b_predict[i] = diff; // re-purposing b_predict
}
r.mean_abs_dev = a / b_exper.size();
r.relative_mean_abs_dev = a / b;
}
r.n_residues = n_residues;
return r;
}
} // anonymous namespace
int GEMMI_MAIN(int argc, char **argv) {
OptParser p(EXE_NAME);
p.simple_parse(argc, argv, Usage);
std::vector<std::string> paths = p.paths_from_args_or_file(FromFile, 0);
int verbose = p.options[Verbose].count();
Params params;
if (p.options[MinDist])
params.min_dist = std::strtof(p.options[MinDist].arg, nullptr);
if (p.options[MaxDist])
params.max_dist = std::strtof(p.options[MaxDist].arg, nullptr);
if (p.options[Exponent])
params.exponent = std::strtof(p.options[Exponent].arg, nullptr);
if (p.options[Blur])
params.blur = std::strtof(p.options[Blur].arg, nullptr);
if (p.options[Rom])
params.rotation_only = true;
if (p.options[ChainName])
params.chain_name = p.options[ChainName].arg;
if (p.options[SideChains])
params.sidechains = p.options[SideChains].arg[0];
if (p.options[OmitEnds])
params.omit_ends = std::max(std::atoi(p.options[OmitEnds].arg), 0);
if (p.options[XyOut])
params.xy_out = p.options[XyOut].arg;
double sum_cc = 0;
double sum_rmad = 0;
double sum_rank_cc = 0;
printf("PDB\tChain\t");
if (p.options[PrintRes])
printf("Res[A]\tRFree\t");
printf("#res\tN\t<B>\tstd(B)\tCC\t1-RMAD\trankCC\n");
try {
for (std::string& path : paths) {
if (verbose > 0)
fprintf(stderr, "File: %s\n", path.c_str());
if (p.options[FromFile] && !p.options[ChainName]) {
size_t sep = path.find_first_of(" \t");
if (sep != std::string::npos) {
params.chain_name = gemmi::trim_str(path.substr(sep));
path.resize(sep);
}
}
Structure st = read_structure_gz(gemmi::expand_if_pdb_code(path));
st.merge_chain_parts();
if (p.options[NoCrystal])
st.cell = UnitCell();
if (p.options[Sanity]) {
if (!check_sanity(st.models.at(0))) {
fprintf(stderr, "Skipping %s\n", path.c_str());
continue;
}
}
gemmi::assign_subchains(st, false);
Result r = test_bfactor_models(st, params);
printf("%s\t%s\t",
st.name.c_str(),
params.chain_name.empty() ? "*" : params.chain_name.c_str());
if (p.options[PrintRes]) {
double rfree = 0;
if (st.meta.refinement.size() > 0)
rfree = st.meta.refinement[0].r_free;
printf("%.2f\t%.2f\t", st.resolution, rfree);
}
printf("%d\t%d\t%.2f\t%.1f\t%.4f\t%.4f\t%.4f\n",
r.n_residues, r.n, r.b_mean, r.b_stddev,
r.cc, 1.0 - r.relative_mean_abs_dev, r.rank_cc);
sum_cc += r.cc;
sum_rmad += r.relative_mean_abs_dev;
sum_rank_cc += r.rank_cc;
}
int N = (int) paths.size();
if (N > 1)
fprintf(stderr,
"average of %4d files CC=%#.4g 1-RMAD=%#.4g rankCC=%#.4g\n",
N, sum_cc / N, 1.0 - sum_rmad / N, sum_rank_cc / N);
} catch (std::runtime_error& e) {
std::fprintf(stderr, "ERROR: %s\n", e.what());
return 1;
}
return 0;
}
|