File: wcn.cpp

package info (click to toggle)
gemmi 0.6.5%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 5,836 kB
  • sloc: cpp: 54,719; python: 4,743; ansic: 3,972; sh: 384; makefile: 73; f90: 42; javascript: 12
file content (404 lines) | stat: -rw-r--r-- 14,342 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
// Copyright 2018 Global Phasing Ltd.
//
// B-factor model testing

#include <gemmi/neighbor.hpp>
#include <gemmi/elem.hpp>  // for is_hydrogen
#include <gemmi/math.hpp>  // for Correlation
#include <gemmi/resinfo.hpp>  // for find_tabulated_residue
#include <gemmi/polyheur.hpp> // for assign_subchains
#include <gemmi/fileutil.hpp> // for file_open
#include <gemmi/pdb_id.hpp>   // for expand_if_pdb_code
#include <gemmi/mmread_gz.hpp> // for read_structure_gz
#define GEMMI_PROG wcn
#include "options.h"
#include <stdio.h>
#include <cstdlib>    // for strtof, atoi
#include <algorithm>  // for sort

using namespace gemmi;

namespace {

enum OptionIndex { FromFile=4, ListResidues, MinDist, MaxDist,
                   Exponent, Blur, Rom, ChainName, Sanity, SideChains,
                   NoCrystal, OmitEnds, PrintRes, XyOut };

struct WcnArg {
  static option::ArgStatus SideChains(const option::Option& option, bool msg) {
    return Arg::Choice(option, msg, {"include", "exclude", "only"});
  }
};
const option::Descriptor Usage[] = {
  { NoOp, 0, "", "", Arg::None,
    "Usage:\n " EXE_NAME " [options] INPUT[...]\n"
    "Calculation of local density / contact numbers: WCN, CN, ACN, LDM, etc."},
  CommonUsage[Help],
  CommonUsage[Version],
  CommonUsage[Verbose],
  { FromFile, 0, "f", "file", Arg::Required,
    "  -f, --file=FILE  \tObtain paths or PDB IDs from FILE, one per line." },
  { ListResidues, 0, "l", "list", Arg::None,
    "  -l, --list  \tList per-residue values." },
  { MinDist, 0, "", "min-dist", Arg::Float,
    "  --min-dist=DIST  \tMinimum distance for \"contacts\" (default: 0.8)." },
  { MaxDist, 0, "", "cutoff", Arg::Float,
    "  --cutoff=DIST  \tMaximum distance for \"contacts\" (default: 15)." },
  { Exponent, 0, "", "pow", Arg::Float,
    "  --pow=P  \tExponent in the weighting (default: 2)." },
  { Blur, 0, "", "blur", Arg::Float,
    "  --blur=SIGMA  \tApply Gaussian smoothing of predicted B-factors." },
  { Rom, 0, "", "rom", Arg::None,
    "  --rom  \tRotation only model: |pos-ctr_of_chain|^P instead of WCN." },
  { ChainName, 0, "", "chain", Arg::Required,
    "  --chain=CHAIN  \tUse only one chain from the INPUT file." },
  { Sanity, 0, "", "sanity", Arg::None,
    "  --sanity  \tRun sanity checks first." },
  { SideChains, 0, "", "sidechains", WcnArg::SideChains,
    "  --sidechains=X  \tOne of: include, exclude, only (default: include)." },
  { NoCrystal, 0, "", "no-crystal", Arg::None,
    "  --no-crystal  \tIgnore crystal symmetry and intermolecular contacts." },
  { OmitEnds, 0, "", "omit-ends", Arg::Int,
    "  --omit-ends=N  \tIgnore N terminal residues from each chain end." },
  { PrintRes, 0, "", "print-res", Arg::None,
    "  --print-res  \tPrint also resolution and R-free." },
  { XyOut, 0, "", "xy-out", Arg::Required,
    "  --xy-out=DIR  \tWrite DIR/name.xy files with WCN and B(exper)." },
  { 0, 0, 0, 0, 0, 0 }
};

struct Params {
  double min_dist = 0.8;
  double max_dist = 15.0;
  double exponent = 2.0;
  double blur = 0.0;
  std::string chain_name;
  bool rotation_only = false;
  char sidechains = 'i';
  int omit_ends = 0;
  std::string xy_out;
};

Position calculate_center_of_mass(const ResidueSpan& residue_span) {
  double mass = 0;
  Vec3 sum;
  for (const Residue& res : residue_span)
    for (const Atom& atom : res.atoms) {
      double w = atom.element.weight() * atom.occ;
      sum += atom.pos * w;
      mass += w;
    }
  return Position(sum / mass);
}

bool check_sanity(const Model& model) {
  for (const Chain& chain : model.chains)
    for (const Residue& res : chain.residues)
      for (const Atom& atom : res.atoms) {
        if (atom.occ < 0 || atom.occ > 1) {
          fprintf(stderr, "WRONG: atom %s in %s has occupancy: %g\n",
                          atom.name.c_str(), res.str().c_str(), atom.occ);
          return false;
        }
        if (atom.b_iso < 0 ||
            (atom.b_iso == 0 && !atom.is_hydrogen() && atom.occ != 0)) {
          fprintf(stderr, "WRONG: atom %s in %s has B_iso: %g\n",
                          atom.name.c_str(), res.str().c_str(), atom.b_iso);
          return false;
        }
      }

  return true;
}

// ranks are from 1 to data.size()
std::vector<int> get_ranks(const std::vector<double>& data) {
  std::vector<int> indices(data.size());
  for (size_t i = 0; i != indices.size(); ++i)
    indices[i] = (int) i;
  std::sort(indices.begin(), indices.end(),
            [&data](int a, int b) { return data[a] < data[b]; });
  std::vector<int> result(data.size());
  for (size_t i = 0; i < indices.size(); ++i)
    result[indices[i]] = (int) i + 1;
  return result;
}

template<typename T>
Correlation calculate_correlation(const std::vector<T>& a,
                                  const std::vector<T>& b) {
  assert(a.size() == b.size());
  Correlation cc;
  for (size_t i = 0; i != a.size(); ++i)
    cc.add_point(a[i], b[i]);
  return cc;
}

struct Result {
  int n_residues;
  int n;
  double b_mean;
  double b_stddev;
  double cc;
  double rank_cc;
  double mean_abs_dev;
  double relative_mean_abs_dev;
};

double calculate_weight(double dist_sq, const Params& params) {
  if (params.exponent == 2.0)  // canonical WCN
    return 1.0 / dist_sq;
  if (params.exponent == 0.0) // CN (a.k.a ACN)
    return 1.0;
  return std::pow(dist_sq, -0.5f * params.exponent);
}

// CA,N,C,O
bool is_protein_backbone(const std::string& name) {
  switch (name.size()) {
    case 1: return name[0] == 'N' || name[0] == 'C' || name[0] == 'O';
    case 2: return name[0] == 'C' && name[1] == 'A';
    default: return false;
  }
}

Result test_bfactor_models(Structure& st, const Params& params) {
  Model& model = st.first_model();

  // prepare cell lists for neighbour search
  std::unique_ptr<NeighborSearch> ns;
  if (!params.rotation_only || params.blur != 0) {
    ns.reset(new NeighborSearch(model, st.cell, params.max_dist));
    for (int n_ch = 0; n_ch != (int) model.chains.size(); ++n_ch) {
      const Chain& chain = model.chains[n_ch];
      for (int n_res = 0; n_res != (int) chain.residues.size(); ++n_res) {
        const Residue& res = chain.residues[n_res];
        if (find_tabulated_residue(res.name).is_buffer_or_water())
          continue;
        for (int n_atom = 0; n_atom != (int) res.atoms.size(); ++n_atom) {
          const Atom& atom = res.atoms[n_atom];
          if (!atom.is_hydrogen())
            ns->add_atom(atom, n_ch, n_res, n_atom);
        }
      }
    }
  }

  // calculate B-factor predictor
  std::vector<double> b_exper;
  std::vector<double> b_predict;
  std::vector<const Atom*> atom_ptr;
  int n_residues = 0;
  for (Chain& chain : model.chains) {
    if (!params.chain_name.empty() && chain.name != params.chain_name)
      continue;
    ResidueSpan polymer = chain.get_polymer();
    if (polymer.size() <= 2 * (size_t) params.omit_ends)
      continue;
    Position com = calculate_center_of_mass(polymer);
    auto p_end = polymer.end() - params.omit_ends;
    for (auto res = polymer.begin() + params.omit_ends; res != p_end; ++res) {
      ++n_residues;
      for (Atom& atom : res->atoms) {
        if (is_hydrogen(atom.element) || atom.occ == 0.0f)
          continue;
        if ((params.sidechains == 'e' && !is_protein_backbone(atom.name)) ||
            (params.sidechains == 'o' && is_protein_backbone(atom.name)))
          continue;
        double r2 = atom.pos.dist_sq(com);
        double value;
        if (params.rotation_only) {
          if (params.exponent == 2)
            value = r2;
          else
            value = std::pow(r2, 0.5 * params.exponent);
        } else {
          double wcn = 0;
          ns->for_each(atom.pos, atom.altloc, params.max_dist,
                       [&](const NeighborSearch::Mark& m, double dist_sq) {
              if (dist_sq > sq(params.min_dist)) {
                CRA cra = m.to_cra(model);
                double weight = calculate_weight(dist_sq, params);
                // if an atom is one of multiple conformations we iterate here
                // only over other atoms of the same conformation (and atoms
                // with no altloc) so we don't weight by occupancy.
                if (atom.altloc == '\0')
                  weight *= cra.atom->occ;
                wcn += weight;
              }
          });
          if (wcn == 0.0) {
            fprintf(stderr, "Warning: lonely atom %s %s %s\n",
                    chain.name.c_str(), res->str().c_str(), atom.name.c_str());
            continue;
          }
          value = 1 / wcn;
        }
        b_exper.push_back(atom.b_iso);
        b_predict.push_back(value);
        // re-purposing u11, u22 and name
        atom.flag = 1;
        atom.aniso.u11 = (float) value;
        atom.aniso.u22 = (float) r2;
        std::string names = chain.name;
        names += '\t';
        names += res->seqid.str();
        names += '\t';
        names += atom.name;
        atom.name = std::move(names);
        atom_ptr.push_back(&atom);
      }
    }
  }

  // smoothing - average weighted by Gaussian(dist)
  if (params.blur > 0) {
    double mult = -0.5 / (params.blur * params.blur);
    for (size_t i = 0; i != atom_ptr.size(); ++i) {
      const Atom& atom = *atom_ptr[i];
      double b_sum = 0;
      double weight_sum = 0;
      ns->for_each(atom.pos, atom.altloc, 3 * params.blur,
                   [&](const NeighborSearch::Mark& m, double dist_sq) {
          const_CRA cra = m.to_cra(model);
          if (cra.atom->flag) {
            double weight = std::exp(mult * dist_sq);
            if (atom.altloc == '\0' && cra.atom != &atom)
              weight *= cra.atom->occ;
            b_sum += weight * cra.atom->aniso.u11;
            weight_sum += weight;
          }
      });
      b_predict[i] = b_sum / weight_sum;
    }
  }

  // optionally, write xy file
  if (!params.xy_out.empty()) {
    std::string path = params.xy_out + "/" + st.name;
    if (!params.chain_name.empty())
      path += "-" + params.chain_name;
    path += ".xy";
    auto f = gemmi::file_open(path.c_str(), "w");
    fprintf(f.get(), "WCN\tB\tr2\tchain\tseqid\tatom\telem\n");
    for (size_t i = 0; i != b_predict.size(); ++i)
      fprintf(f.get(), "%g\t%g\t%.2f\t%s\t%s\n",
              b_predict[i], b_exper[i],
              atom_ptr[i]->aniso.u22, // squared distance to the center of mass
              // Atom::name was used here to store also chain and seqid
              atom_ptr[i]->name.c_str(),
              atom_ptr[i]->element.name());
  }

  // calculate statistics
  Correlation cc = calculate_correlation(b_predict, b_exper);
  Correlation rank_cc = calculate_correlation(get_ranks(b_predict),
                                              get_ranks(b_exper));
  Result r;
  r.b_mean = cc.mean_y;
  r.b_stddev = std::sqrt(cc.y_variance());
  r.n = (int) b_exper.size();
  r.cc = cc.coefficient();
  r.rank_cc = rank_cc.coefficient();
  {
    double slope = cc.slope();
    double intercept = cc.intercept();
    double a = 0, b = 0;
    for (size_t i = 0; i != b_exper.size(); ++i) {
      double diff = b_predict[i] * slope + intercept - b_exper[i];
      a += std::abs(diff);
      b += std::abs(b_exper[i] - cc.mean_y);
      //b_predict[i] = diff; // re-purposing b_predict
    }
    r.mean_abs_dev = a / b_exper.size();
    r.relative_mean_abs_dev = a / b;
  }
  r.n_residues = n_residues;
  return r;
}

} // anonymous namespace

int GEMMI_MAIN(int argc, char **argv) {
  OptParser p(EXE_NAME);
  p.simple_parse(argc, argv, Usage);

  std::vector<std::string> paths = p.paths_from_args_or_file(FromFile, 0);

  int verbose = p.options[Verbose].count();
  Params params;
  if (p.options[MinDist])
    params.min_dist = std::strtof(p.options[MinDist].arg, nullptr);
  if (p.options[MaxDist])
    params.max_dist = std::strtof(p.options[MaxDist].arg, nullptr);
  if (p.options[Exponent])
    params.exponent = std::strtof(p.options[Exponent].arg, nullptr);
  if (p.options[Blur])
    params.blur = std::strtof(p.options[Blur].arg, nullptr);
  if (p.options[Rom])
    params.rotation_only = true;
  if (p.options[ChainName])
    params.chain_name = p.options[ChainName].arg;
  if (p.options[SideChains])
    params.sidechains = p.options[SideChains].arg[0];
  if (p.options[OmitEnds])
    params.omit_ends = std::max(std::atoi(p.options[OmitEnds].arg), 0);
  if (p.options[XyOut])
    params.xy_out = p.options[XyOut].arg;
  double sum_cc = 0;
  double sum_rmad = 0;
  double sum_rank_cc = 0;
  printf("PDB\tChain\t");
  if (p.options[PrintRes])
    printf("Res[A]\tRFree\t");
  printf("#res\tN\t<B>\tstd(B)\tCC\t1-RMAD\trankCC\n");
  try {
    for (std::string& path : paths) {
      if (verbose > 0)
        fprintf(stderr, "File: %s\n", path.c_str());
      if (p.options[FromFile] && !p.options[ChainName]) {
        size_t sep = path.find_first_of(" \t");
        if (sep != std::string::npos) {
          params.chain_name = gemmi::trim_str(path.substr(sep));
          path.resize(sep);
        }
      }
      Structure st = read_structure_gz(gemmi::expand_if_pdb_code(path));
      st.merge_chain_parts();
      if (p.options[NoCrystal])
        st.cell = UnitCell();
      if (p.options[Sanity]) {
        if (!check_sanity(st.models.at(0))) {
          fprintf(stderr, "Skipping %s\n", path.c_str());
          continue;
        }
      }
      gemmi::assign_subchains(st, false);
      Result r = test_bfactor_models(st, params);
      printf("%s\t%s\t",
             st.name.c_str(),
             params.chain_name.empty() ? "*" : params.chain_name.c_str());
      if (p.options[PrintRes]) {
        double rfree = 0;
        if (st.meta.refinement.size() > 0)
          rfree = st.meta.refinement[0].r_free;
        printf("%.2f\t%.2f\t", st.resolution, rfree);
      }
      printf("%d\t%d\t%.2f\t%.1f\t%.4f\t%.4f\t%.4f\n",
             r.n_residues, r.n, r.b_mean, r.b_stddev,
             r.cc, 1.0 - r.relative_mean_abs_dev, r.rank_cc);
      sum_cc += r.cc;
      sum_rmad += r.relative_mean_abs_dev;
      sum_rank_cc += r.rank_cc;
    }
    int N = (int) paths.size();
    if (N > 1)
      fprintf(stderr,
              "average of %4d files    CC=%#.4g  1-RMAD=%#.4g  rankCC=%#.4g\n",
              N, sum_cc / N, 1.0 - sum_rmad / N, sum_rank_cc / N);
  } catch (std::runtime_error& e) {
    std::fprintf(stderr, "ERROR: %s\n", e.what());
    return 1;
  }
  return 0;
}