File: xds2mtz.cpp

package info (click to toggle)
gemmi 0.6.5%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 5,836 kB
  • sloc: cpp: 54,719; python: 4,743; ansic: 3,972; sh: 384; makefile: 73; f90: 42; javascript: 12
file content (283 lines) | stat: -rw-r--r-- 11,556 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
// Copyright 2022 Global Phasing Ltd.
//
// Convert reflection data from XDS_ASCII to MTZ.

#include <cstdio>             // for fprintf
#include <map>
#include <gemmi/gz.hpp>        // for MaybeGzipped
#include <gemmi/xds_ascii.hpp> // for XdsAscii
#include <gemmi/mtz.hpp>       // for Mtz
#include <gemmi/version.hpp>   // for GEMMI_VERSION

#define GEMMI_PROG xds2mtz
#include "options.h"

namespace {

enum OptionIndex {
  Title=4, History, Project, Crystal, Dataset, Batchmin, Polarization, Normal, Overload
};

const option::Descriptor Usage[] = {
  { NoOp, 0, "", "", Arg::None,
    "Usage:"
    "\n  " EXE_NAME " [options] XDS_FILE MTZ_FILE"
    "\nOptions:"},
  CommonUsage[Help],
  CommonUsage[Version],
  CommonUsage[Verbose],
  { Title, 0, "", "title", Arg::Required,
    "  --title  \tMTZ title." },
  { History, 0, "-H", "history", Arg::Required,
    "  -H LINE, --history=LINE  \tAdd a history line." },
  { Project, 0, "", "project", Arg::Required,
    "  --project=PROJECT  \tProject in MTZ hierarchy (default: 'XDSproject')" },
  { Crystal, 0, "", "crystal", Arg::Required,
    "  --crystal=CRYSTAL  \tCrystal in MTZ hierarchy (default: 'XDScrystal')" },
  { Dataset, 0, "", "dataset", Arg::Required,
    "  --dataset=DATASET  \tDataset in MTZ hierarchy (default: 'XDSdataset')" },
  { Batchmin, 0, "", "batchmin", Arg::Int,
    "  --batchmin=BATCHMIN  \tDelete reflections with BATCH<BATCHMIN (default: 1)" },
  { NoOp, 0, "", "", Arg::None,
    "\nPolarization correction and overload elimination options for INTEGRATE.HKL files:" },
  { Polarization, 0, "", "polarization", Arg::Float,
    "  --polarization=VALUE  \tXDS parameter FRACTION_OF_POLARIZATION" },
  { Normal, 0, "", "normal", Arg::Float3,
    "  --normal='Pnx Pny Pnz'  \tXDS POLARIZATION_PLANE_NORMAL (default: '0 1 0')" },
  { Overload, 0, "", "overload", Arg::Float,
    "  --overload=OVERLOAD  \tXDS parameter OVERLOAD to eliminate reflections with MAXC>OVERLOAD" },
  { NoOp, 0, "", "", Arg::None,
    "\nIf XDS_FILE is -, the input is read from stdin." },
  { 0, 0, 0, 0, 0, 0 }
};

} // anonymous namespace

int GEMMI_MAIN(int argc, char **argv) {
  OptParser p(EXE_NAME);
  p.simple_parse(argc, argv, Usage);
  p.require_positional_args(2);
  if (p.options[Normal] && !p.options[Polarization]) {
    std::fprintf(stderr, "Error. Option -%s without -%s.\n",
                 p.given_name(Normal), p.given_name(Polarization));
    return 1;
  }
  bool verbose = p.options[Verbose];
  const char* input_path = p.nonOption(0);
  const char* output_path = p.nonOption(1);

  gemmi::XdsAscii xds;
  if (verbose)
    std::fprintf(stderr, "Reading %s ...\n", input_path);
  try {
    xds.read_input(gemmi::MaybeGzipped(input_path));

    // batchmin handling
    int batchmin = 1;
    if (p.options[Batchmin])
      batchmin = std::atoi(p.options[Batchmin].arg);
    size_t size_before = xds.data.size();
    xds.eliminate_batchmin(batchmin);
    size_t nbatchmin = size_before - xds.data.size();
    if (verbose || nbatchmin != 0)
      std::printf("Number of deleted reflections with BATCH < %d (i.e. ZD < %d) = %zu\n",
                  batchmin, batchmin-1, nbatchmin);

    // polarization correction
    if (p.options[Polarization]) {
      if (xds.generated_by != "INTEGRATE") {
        std::fprintf(stderr,
                     "Error: --polarization given for data from %s (not from INTEGRATE).\n",
                     xds.generated_by.c_str());
        return 1;
      }
      if (gemmi::likely_in_house_source(xds.wavelength))
        std::fprintf(stderr, "WARNING: likely in-house source (wavelength %g)\n"
                             "         polarization correction can be inappropriate.\n",
                     xds.wavelength);
      if (verbose)
        std::fprintf(stderr, "Applying polarization correction...\n");
      double fraction = std::atof(p.options[Polarization].arg);
      gemmi::Vec3 pn(0., 1., 0.);
      if (p.options[Normal]) {
        auto v = parse_blank_separated_numbers(p.options[Normal].arg);
        pn = gemmi::Vec3(v[0], v[1], v[2]);
      }
      xds.apply_polarization_correction(fraction, pn);
    }

    // overload handling
    if (p.options[Overload]) {
      if (xds.generated_by != "INTEGRATE") {
        std::fprintf(stderr,
                     "Error: --overload given for data from %s (not from INTEGRATE).\n",
                     xds.generated_by.c_str());
        return 1;
      }
      if (verbose)
        std::fprintf(stderr, "Eliminating overloads...\n");
      double overload = std::atof(p.options[Overload].arg);
      size_before = xds.data.size();
      xds.eliminate_overloads(overload);
      size_t nover = size_before - xds.data.size();
      std::printf("Number of eliminated reflections with MAXC > %g = %zu\n", overload, nover);
    }

    gemmi::Mtz mtz;
    if (const option::Option* opt = p.options[Title])
      mtz.title = opt->arg;
    else
      mtz.title = "Converted from " + gemmi::path_basename(input_path, {});
    if (const option::Option* opt = p.options[History]) {
      for (; opt; opt = opt->next())
        mtz.history.emplace_back(opt->arg);
    } else {
      mtz.history.emplace_back("From gemmi-xds2mtz " GEMMI_VERSION);
      mtz.history.push_back(gemmi::cat("From ", xds.generated_by, ' ', xds.version_str));
    }
    mtz.cell = xds.unit_cell;
    mtz.spacegroup = gemmi::find_spacegroup_by_number(xds.spacegroup_number);
    mtz.add_base();
    const char* pxd[3] = {"XDSproject", "XDScrystal", "XDSdataset"};
    if (const option::Option* opt = p.options[Project])
      pxd[0] = opt->arg;
    if (const option::Option* opt = p.options[Crystal])
      pxd[1] = opt->arg;
    if (const option::Option* opt = p.options[Dataset])
      pxd[2] = opt->arg;
    mtz.datasets.push_back({1, pxd[0], pxd[1], pxd[2], mtz.cell, xds.wavelength});
    mtz.add_column("M/ISYM", 'Y', 0, -1, false);
    mtz.add_column("BATCH", 'B', 0, -1, false);
    mtz.add_column("I", 'J', 0, -1, false);
    mtz.add_column("SIGI", 'Q', 0, -1, false);
    mtz.add_column("XDET", 'R', 0, -1, false);
    mtz.add_column("YDET", 'R', 0, -1, false);
    mtz.add_column("ROT", 'R', 0, -1, false);
    if (xds.read_columns >= 11) {
      mtz.add_column("FRACTIONCALC", 'R', 0, -1, false);
      mtz.add_column("LP", 'R', 0, -1, false);
      mtz.add_column("CORR", 'R', 0, -1, false);
      if (xds.read_columns > 11)
        mtz.add_column("MAXC", 'I', 0, -1, false);
    }
    mtz.add_column("FLAG", 'I', 0, -1, false);
    mtz.nreflections = (int) xds.data.size();
    mtz.data.resize(mtz.columns.size() * xds.data.size());
    gemmi::UnmergedHklMover hkl_mover(mtz.spacegroup);
    int max_frame = 0;
    for (const gemmi::XdsAscii::Refl& refl : xds.data)
      max_frame = std::max(max_frame, refl.frame());
    int iset_offset = (max_frame + 11000) / 10000 * 10000;
    // iset,frame -> batch
    std::map<std::pair<int,int>, int> frames;
    size_t k = 0;
    for (const gemmi::XdsAscii::Refl& refl : xds.data) {
      auto hkl = refl.hkl;
      int isym = hkl_mover.move_to_asu(hkl);
      for (size_t j = 0; j != 3; ++j)
        mtz.data[k++] = (float) hkl[j];
      mtz.data[k++] = (float) isym;
      int frame = refl.frame();
      int batch = frame + iset_offset * std::max(refl.iset - 1, 0);
      frames.emplace(std::make_pair(refl.iset, frame), batch);
      mtz.data[k++] = (float) batch;
      mtz.data[k++] = (float) refl.iobs;  // I
      mtz.data[k++] = (float) std::fabs(refl.sigma);  // SIGI
      mtz.data[k++] = (float) refl.xd;
      mtz.data[k++] = (float) refl.yd;
      mtz.data[k++] = (float) xds.rot_angle(refl);  // ROT
      if (xds.read_columns >= 11) {
        mtz.data[k++] = float(0.01 * refl.peak);  // FRACTIONCALC
        mtz.data[k++] = (float) refl.rlp;
        mtz.data[k++] = float(0.01 * refl.corr);
        if (xds.read_columns > 11)
          mtz.data[k++] = (float) refl.maxc;
      }
      mtz.data[k++] = refl.sigma < 0 ? 64.f : 0.f;  // FLAG
    }
    // Prepare a similar batch header as Pointless.
    gemmi::Mtz::Batch batch;
    batch.set_dataset_id(1);

    // We don't set lbcell (refinement flags for unit cell),
    // because it's probably not used by any program anyway.
    // batch.ints[4] to [9] = left unset

    // We also skip jumpax, which is defined as:
    // reciprocal axis closest to principle goniostat axis E1
    // batch.ints[11] = left unset

    // We assume one crystal, one goniostat axis, one detector.
    batch.ints[12] = 1;  // ncryst
    batch.ints[14] = 2;  // ldtype 3D
    batch.ints[15] = 1;  // jsaxs - goniostat scan axis number
    batch.ints[17] = 1;  // ngonax - number of goniostat axes
    batch.ints[19] = 1;  // ndet

    batch.set_cell(mtz.cell);  // batch.floats[0] to [5]
    gemmi::Vec3 s0(-1, 0, 0); // will be re-set if we have geometry info
    try {
      gemmi::Mat33 Q = xds.calculate_conversion_from_cambridge().inverse();
      s0 = -Q.multiply(xds.get_s0_direction());
      // Orientation matrix U. It is calculated differently in Pointless,
      // so the results are slightly different (due to limited precision
      // of numbers in XDS file).
      gemmi::Mat33 U = Q.multiply(xds.get_orientation());
      for (int i = 0; i < 3; ++i)
        for (int j = 0; j < 3; ++j)
          batch.floats[6 + 3*i + j] = (float) U[j][i];
    } catch (std::runtime_error& e) {
      // if some of the headers are absent, U is not set
      // and s0 is set to "idealised" s0
      std::fprintf(stderr, "Note: %s, orientation matrix U not set.\n", e.what());
    }
    batch.floats[21] = float(xds.reflecting_range_esd);  // crydat(0)
    // In the so-called "Cambridge" frame (as used by Mosflm),
    // the principal rotation axis is along z
    // and the incident beam S0 is along x.
    // Therefore, we set the rotation axis phi (scanax) to:
    batch.floats[38+2] = 1.f;  // scanax = [0, 0, 1]
    batch.floats[47] = float(xds.oscillation_range);  // phi range
    // E1,E2,E3 vectors are the goniostat axes in Cambridge laboratory frame.
    // E1 is set to rotation axis. E2 and E3 are not set for ngonax==1.
    batch.floats[59+2] = 1.f;  // e1 = scanax

    // Idealised source vector is -x ([-1 0 0]), antiparallel to beam.
    batch.floats[80+0] = -1.f;  // source[0]

    // s0 source vector (including tilts), CMtz::MTZBAT::so in libccp4
    batch.floats[83] = (float) s0.x;
    batch.floats[84] = (float) s0.y;
    batch.floats[85] = (float) s0.z;

    batch.set_wavelength((float)xds.wavelength);  // batch.floats[86]
    // or batch.set_wavelength(iset.wavelength);
    // Detector geometry.
    batch.floats[111] = (float) xds.detector_distance;  // dx[0]
    batch.floats[113] = 1.f;  // detlm[0][0][0]
    batch.floats[114] = (float) xds.nx;
    batch.floats[115] = 1.f;
    batch.floats[116] = (float) xds.ny;
    batch.axes.push_back("PHI");  // gonlab[0]

    for (auto& t : frames) {
      batch.set_dataset_id(t.first.first);
      batch.number = t.second;
      int frame = t.first.second;
      double phistt = xds.starting_angle +
                      xds.oscillation_range * (frame - xds.starting_frame);
      batch.floats[36] = float(phistt);
      batch.floats[37] = float(phistt + xds.oscillation_range);  // phiend
      mtz.batches.push_back(batch);
    }
    mtz.sort(5);
    if (verbose)
      std::fprintf(stderr, "Writing %d reflections to %s ...\n",
                   mtz.nreflections, output_path);
    mtz.write_to_file(output_path);
  } catch (std::exception& e) {
    std::fprintf(stderr, "ERROR: %s\n", e.what());
    return 1;
  }
  return 0;
}