1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
// Copyright 2018 Global Phasing Ltd.
#include <complex>
// for symmetrize_min and symmetrize_max
bool operator<(const std::complex<float>& a, const std::complex<float>& b) {
return std::norm(a) < std::norm(b);
}
bool operator>(const std::complex<float>& a, const std::complex<float>& b) {
return std::norm(a) > std::norm(b);
}
#include "common.h"
#include "array.h"
#include "make_iterator.h"
#include <nanobind/ndarray.h>
#include <nanobind/stl/array.h>
#include <nanobind/stl/complex.h>
#include <nanobind/stl/string.h>
#include <nanobind/stl/vector.h> // for find_blobs_by_flood_fill, ...
#include "gemmi/grid.hpp"
#include "gemmi/floodfill.hpp" // for flood_fill_above
#include "gemmi/solmask.hpp" // for SolventMasker, mask_points_in_constant_radius
#include "gemmi/blob.hpp" // for Blob, find_blobs_by_flood_fill
#include "gemmi/asumask.hpp" // for MaskedGrid
using namespace gemmi;
namespace {
template<typename T>
auto grid_to_array(GridMeta& g, std::vector<T>& data) {
// should we take AxisOrder into account here?
return nb::ndarray<nb::numpy, T>(data.data(),
{(size_t)g.nu, (size_t)g.nv, (size_t)g.nw},
nb::handle(),
{1, g.nu, g.nu * g.nv});
}
template<typename T>
nb::class_<GridBase<T>, GridMeta> add_grid_base(nb::module_& m, const char* name) {
using GrBase = GridBase<T>;
using GrPoint = typename GridBase<T>::Point;
nb::class_<GrBase, GridMeta> grid_base(m, name);
nb::class_<GrPoint>(grid_base, "Point")
.def_ro("u", &GrPoint::u)
.def_ro("v", &GrPoint::v)
.def_ro("w", &GrPoint::w)
.def_prop_rw("value",
[](const GrPoint& self) { return *self.value; },
[](GrPoint& self, T x) { *self.value = x; })
.def("__repr__", [=](const GrPoint& self) {
return nb::str("<gemmi.{}.Point ({}, {}, {}) -> {}>")
.format(name, self.u, self.v, self.w, self.value);
});
auto to_array = [](GrBase& gr) { return grid_to_array(gr, gr.data); };
grid_base
.def_prop_ro("array", to_array, nb::rv_policy::reference_internal)
.def("__array__", [](nb::handle_t<GrBase>& h, nb::handle dtype, nb::handle copy) {
return handle_numpy_array_args(h.attr("array"), dtype, copy);
}, nb::arg("dtype")=nb::none(), nb::arg("copy")=nb::none())
.def("point_to_index", &GrBase::point_to_index)
.def("index_to_point", &GrBase::index_to_point)
.def("fill", &GrBase::fill, nb::arg("value"))
.def("sum", &GrBase::sum)
.def("__iter__", [](GrBase& self) {
return usual_iterator(self, self);
}, nb::keep_alive<0, 1>())
;
return grid_base;
}
template<typename T>
nb::class_<Grid<T>, GridBase<T>> add_grid_common(nb::module_& m, const std::string& name) {
using Gr = Grid<T>;
using GrPoint = typename GridBase<T>::Point;
using Masked = MaskedGrid<T>;
nb::class_<Gr, GridBase<T>> grid(m, name.c_str());
nb::class_<Masked> masked_grid (m, ("Masked" + name).c_str());
grid
.def(nb::init<>())
.def("__init__", [](Gr* grid, int nx, int ny, int nz) {
new(grid) Gr();
grid->set_size(nx, ny, nz);
}, nb::arg("nx"), nb::arg("ny"), nb::arg("nz"))
.def("__init__", [](Gr* grid, const nb::ndarray<nb::numpy, T, nb::ndim<3>>& arr,
const UnitCell *cell, const SpaceGroup* sg) {
new(grid) Gr();
auto r = arr.view();
grid->set_size((int)r.shape(0), (int)r.shape(1), (int)r.shape(2));
for (size_t k = 0; k < r.shape(2); ++k)
for (size_t j = 0; j < r.shape(1); ++j)
for (size_t i = 0; i < r.shape(0); ++i)
grid->data[grid->index_q(i, j, k)] = r(i, j, k);
if (cell)
grid->set_unit_cell(*cell);
if (sg)
grid->spacegroup = sg;
}, nb::arg().noconvert(), nb::arg("cell")=nb::none(), nb::arg("spacegroup")=nb::none())
.def_prop_ro("spacing", [](const Gr& self) {
return nb::make_tuple(self.spacing[0], self.spacing[1], self.spacing[2]);
})
.def("set_size", &Gr::set_size)
.def("set_size_from_spacing", &Gr::set_size_from_spacing,
nb::arg("spacing"), nb::arg("rounding"))
.def("get_value", &Gr::get_value)
.def("set_value", &Gr::set_value)
.def("get_point", &Gr::get_point)
.def("get_nearest_point", (GrPoint (Gr::*)(const Position&)) &Gr::get_nearest_point)
.def("point_to_fractional", &Gr::point_to_fractional)
.def("point_to_position", &Gr::point_to_position)
.def("change_values", &Gr::change_values, nb::arg("old_value"), nb::arg("new_value"))
.def("copy_metadata_from", &Gr::copy_metadata_from)
.def("setup_from", &Gr::template setup_from<Structure>,
nb::arg("st"), nb::arg("spacing")=0.)
.def("set_unit_cell", (void (Gr::*)(const UnitCell&)) &Gr::set_unit_cell)
.def("set_points_around", &Gr::set_points_around,
nb::arg("position"), nb::arg("radius"), nb::arg("value"), nb::arg("use_pbc")=true)
.def("symmetrize_min", &Gr::symmetrize_min)
.def("symmetrize_max", &Gr::symmetrize_max)
.def("symmetrize_abs_max", &Gr::symmetrize_abs_max)
.def("symmetrize_sum", &Gr::symmetrize_sum)
.def("masked_asu", &masked_asu<T>, nb::keep_alive<0, 1>())
.def("mask_points_in_constant_radius", &mask_points_in_constant_radius<T>,
nb::arg("model"), nb::arg("radius"), nb::arg("value"),
nb::arg("ignore_hydrogen")=false, nb::arg("ignore_zero_occupancy_atoms")=false)
.def("get_subarray",
[](const Gr& self, std::array<int,3> start, std::array<int,3> shape) {
auto arr = make_numpy_array<T>(
{(size_t)shape[0], (size_t)shape[1], (size_t)shape[2]},
{1, int64_t(shape[0]), int64_t(shape[0]*shape[1])});
self.get_subarray(arr.data(), start, shape);
return arr;
}, nb::arg("start"), nb::arg("shape"))
.def("set_subarray",
[](Gr& self,
const nb::ndarray<T, nb::ndim<3>, nb::f_contig, nb::device::cpu>& arr,
std::array<int,3> start) {
self.set_subarray(arr.data(), start,
{(int)arr.shape(0), (int)arr.shape(1), (int)arr.shape(2)});
}, nb::arg("arr"), nb::arg("start"))
.def("clone", [](const Gr& self) { return new Gr(self); })
.def("__repr__", [=](const Gr& self) {
return cat("<gemmi.", name, '(', self.nu, ", ", self.nv, ", ", self.nw, ")>");
});
masked_grid
.def_ro("grid", &Masked::grid, nb::rv_policy::reference)
.def_prop_ro("mask_array", [](Masked& self) {
return grid_to_array(*self.grid, self.mask);
}, nb::rv_policy::reference_internal)
.def("__iter__", [](Masked& self) {
return usual_iterator(self, self);
}, nb::keep_alive<0, 1>())
;
return grid;
}
template<typename T>
void add_grid_interpolation(nb::class_<Grid<T>, GridBase<T>>& grid) {
using Gr = Grid<T>;
grid
.def("interpolate_value",
(T (Gr::*)(const Fractional&, int) const) &Gr::interpolate_value,
nb::arg(), nb::arg("order")=1)
.def("interpolate_value",
(T (Gr::*)(const Position&, int) const) &Gr::interpolate_value,
nb::arg(), nb::arg("order")=1)
// deprecated, use interpolate_value(..., order=3)
.def("tricubic_interpolation",
(double (Gr::*)(const Fractional&) const) &Gr::tricubic_interpolation)
// deprecated, use interpolate_value(..., order=3)
.def("tricubic_interpolation",
(double (Gr::*)(const Position&) const) &Gr::tricubic_interpolation)
.def("tricubic_interpolation_der",
(std::array<double,4> (Gr::*)(const Fractional&) const)
&Gr::tricubic_interpolation_der)
.def("interpolate_position_array",
[](const Gr& self, const nb::ndarray<double, nb::shape<-1,3>, nb::device::cpu>& xyz,
int order, const Transform* to_frac) {
auto xyz_view = xyz.view();
size_t len = xyz_view.shape(0);
auto values = make_numpy_array<T>({len});
T* data = values.data();
const Transform& frac = to_frac ? *to_frac : self.unit_cell.frac;
for (size_t i = 0; i < len; ++i) {
Position pos(xyz_view(i, 0), xyz_view(i, 1), xyz_view(i, 2));
Fractional fpos = Fractional(frac.apply(pos));
data[i] = self.interpolate_value(fpos, order);
}
return values;
}, nb::arg("xyz"), nb::arg("order")=1, nb::arg("to_frac")=nb::none())
// The name of this function is not very descriptive, but since it's used
// in a few external projects, renaming it isn't worth the hassle.
// cf. interpolate_grid
.def("interpolate_values",
[](const Gr& self, nb::ndarray<nb::numpy, T, nb::ndim<3>>& arr,
const Transform& tr, int order) {
auto r = arr.view();
for (size_t i = 0; i < r.shape(0); ++i)
for (size_t j = 0; j < r.shape(1); ++j)
for (size_t k = 0; k < r.shape(2); ++k) {
Position pos(tr.apply(Vec3(i, j, k)));
Fractional fpos = self.unit_cell.fractionalize(pos);
r(i, j, k) = self.interpolate_value(fpos, order);
}
}, nb::arg().noconvert(), nb::arg(), nb::arg("order")=1)
.def("interpolate_grid_flexible",
// Interpolate the moving grid onto the interpolated grid, applying different transforms to
// different regions
[](
Gr& interpolated_map,
const Gr& moving_map,
std::vector<nb::ndarray<int, nb::shape<-1,3>>>& point_arr_vec,
std::vector<nb::ndarray<float, nb::shape<-1,3>>>& pos_arr_vec,
std::vector<Transform> transform_vec
) {
// For each transform in the list, interpolate the positions in the moving map
// corresponding to points in the interpolated map. This method is based on
// contiguous groups of positions in real space, and hence the need to
// separate out the point and pos arrays, to ensure the correct symmetry
// copies of of the positions corresponding to a map point are used.
// Python code to derive such partitionings of the unit cell around a
// molecule can be found in https://github.com/ConorFWild/pandda_2_gemmi
for (std::size_t i=0; i < point_arr_vec.size(); i++){
nb::ndarray<int, nb::shape<-1,3>> point_array = point_arr_vec[i];
nb::ndarray<float, nb::shape<-1,3>> pos_array = pos_arr_vec[i];
const Transform transform = transform_vec[i];
auto r_point = point_array.view();
auto r_pos = pos_array.view();
for (std::size_t i=0; i < r_point.shape(0); i++)
{
// Position
Position pos = Position(
r_pos(i,0),
r_pos(i,1),
r_pos(i,2)
);
//transform
Position pos_moving = Position(transform.apply(pos));
// fractionalise
Fractional pos_moving_fractional = moving_map.unit_cell.fractionalize(pos_moving);
// interpolate
float interpolated_value = moving_map.interpolate_value(pos_moving_fractional);
// assign
interpolated_map.set_value(
r_point(i, 0),
r_point(i, 1),
r_point(i, 2),
interpolated_value
);
};
}
}, nb::arg(), nb::arg().noconvert(), nb::arg().noconvert(), nb::arg())
;
}
} // anonymous namespace
void add_grid(nb::module_& m) {
nb::enum_<AxisOrder>(m, "AxisOrder")
.value("Unknown", AxisOrder::Unknown)
.value("XYZ", AxisOrder::XYZ)
.value("ZYX", AxisOrder::ZYX);
nb::enum_<GridSizeRounding>(m, "GridSizeRounding")
.value("Nearest", GridSizeRounding::Nearest)
.value("Up", GridSizeRounding::Up)
.value("Down", GridSizeRounding::Down);
nb::class_<GridMeta>(m, "GridMeta")
.def_rw("spacegroup", &GridMeta::spacegroup)
.def_rw("unit_cell", &GridMeta::unit_cell)
.def_ro("nu", &GridMeta::nu, "size in the first (fastest-changing) dim")
.def_ro("nv", &GridMeta::nv, "size in the second dimension")
.def_ro("nw", &GridMeta::nw, "size in the third (slowest-changing) dim")
.def_ro("axis_order", &GridMeta::axis_order)
.def_prop_ro("point_count", &GridMeta::point_count)
.def("get_position", &GridMeta::get_position)
.def("get_fractional", &GridMeta::get_fractional)
.def_prop_ro("shape", [](const GridMeta& self) {
return nb::make_tuple(self.nu, self.nv, self.nw);
});
add_grid_base<int8_t>(m, "Int8GridBase")
.def("get_nonzero_extent", &get_nonzero_extent<int8_t>);
add_grid_common<int8_t>(m, "Int8Grid");
add_grid_base<float>(m, "FloatGridBase")
.def("calculate_correlation", &calculate_correlation<float>)
.def("get_nonzero_extent", &get_nonzero_extent<float>)
;
auto grid_float = add_grid_common<float>(m, "FloatGrid");
add_grid_interpolation<float>(grid_float);
grid_float.def("symmetrize_avg", &Grid<float>::symmetrize_avg);
grid_float.def("normalize", &Grid<float>::normalize);
grid_float.def("add_soft_edge_to_mask", &add_soft_edge_to_mask<float>);
add_grid_base<std::complex<float>>(m, "ComplexGridBase");
// from solmask.hpp
nb::enum_<AtomicRadiiSet>(m, "AtomicRadiiSet")
.value("VanDerWaals", AtomicRadiiSet::VanDerWaals)
.value("Cctbx", AtomicRadiiSet::Cctbx)
.value("Refmac", AtomicRadiiSet::Refmac)
.value("Constant", AtomicRadiiSet::Constant);
nb::class_<SolventMasker>(m, "SolventMasker")
.def(nb::init<AtomicRadiiSet, double>(),
nb::arg("choice"), nb::arg("constant_r")=0.)
.def_rw("atomic_radii_set", &SolventMasker::atomic_radii_set)
.def_rw("rprobe", &SolventMasker::rprobe)
.def_rw("rshrink", &SolventMasker::rshrink)
.def_rw("island_min_volume", &SolventMasker::island_min_volume)
.def_rw("constant_r", &SolventMasker::constant_r)
.def_rw("ignore_hydrogen", &SolventMasker::ignore_hydrogen)
.def_rw("ignore_zero_occupancy_atoms", &SolventMasker::ignore_zero_occupancy_atoms)
.def_rw("use_atom_occupancy", &SolventMasker::use_atom_occupancy)
.def("set_radii", &SolventMasker::set_radii,
nb::arg("choice"), nb::arg("constant_r")=0.)
.def("put_mask_on_int8_grid", &SolventMasker::put_mask_on_grid<int8_t>)
.def("put_mask_on_float_grid", &SolventMasker::put_mask_on_grid<float>)
.def("set_to_zero", &SolventMasker::set_to_zero)
;
m.def("interpolate_grid", &interpolate_grid<float>,
nb::arg("dest"), nb::arg("src"), nb::arg("tr"), nb::arg("order")=1);
m.def("interpolate_grid_around_model", &interpolate_grid_around_model<float>,
nb::arg("dest"), nb::arg("src"), nb::arg("tr"),
nb::arg("dest_model"), nb::arg("radius"), nb::arg("order")=1);
// from blob.hpp
nb::class_<Blob>(m, "Blob")
.def_ro("volume", &Blob::volume)
.def_ro("score", &Blob::score)
.def_ro("peak_value", &Blob::peak_value)
.def_ro("centroid", &Blob::centroid)
.def_ro("peak_pos", &Blob::peak_pos)
;
m.def("find_blobs_by_flood_fill",
[](const Grid<float>& grid, double cutoff, double min_volume,
double min_score, double min_peak, bool negate) {
BlobCriteria crit;
crit.cutoff = cutoff;
crit.min_volume = min_volume;
crit.min_score = min_score;
crit.min_peak = min_peak;
return find_blobs_by_flood_fill(grid, crit, negate);
}, nb::arg("grid"), nb::arg("cutoff"), nb::arg("min_volume")=10.,
nb::arg("min_score")=15., nb::arg("min_peak")=0., nb::arg("negate")=false);
// from floodfill.hpp
m.def("flood_fill_above", &flood_fill_above,
nb::arg("grid"), nb::arg("seeds"), nb::arg("threshold"), nb::arg("negate")=false);
// from asumask.hpp
nb::class_<AsuBrick>(m, "AsuBrick")
.def_ro("size", &AsuBrick::size)
.def_ro("incl", &AsuBrick::incl)
.def("get_extent", &AsuBrick::get_extent)
.def("str", &AsuBrick::str)
;
m.def("find_asu_brick", &find_asu_brick);
}
|