1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
// Copyright 2019 Global Phasing Ltd.
#include "common.h"
#include "array.h" // numpy_array_from_vector
#include <nanobind/stl/array.h>
#include <nanobind/stl/bind_vector.h>
#include <nanobind/stl/string.h>
#include <nanobind/stl/vector.h>
#include <nanobind/ndarray.h>
#include "gemmi/unitcell.hpp"
#include "gemmi/refln.hpp"
#include "gemmi/fourier.hpp" // for get_size_for_hkl, get_f_phi_on_grid, ...
#include "gemmi/fprime.hpp" // for cromer_liberman
#include "gemmi/reciproc.hpp" // for count_reflections, make_miller_vector
#include "gemmi/cif2mtz.hpp" // for CifToMtz
#include "gemmi/mtz2cif.hpp" // for MtzToCif
#include "gemmi/intensit.hpp" // for Intensities
#include "gemmi/binner.hpp" // for Binner
#include "gemmi/ecalc.hpp" // for calculate_amplitude_normalizers
using namespace gemmi;
NB_MAKE_OPAQUE(std::vector<ReflnBlock>)
// HklMatch used to live in C++ library (in binner.hpp),
// but AFAICT it hasn't found good use in C++, so it was moved here.
struct HklMatch {
std::vector<int> pos;
size_t hkl_size;
HklMatch(const Miller* hkl, size_t hkl_size_,
const Miller* ref, size_t ref_size)
: pos(ref_size, -1), hkl_size(hkl_size_) {
// Usually, both datasets are sorted. This make things faster.
if (std::is_sorted(hkl, hkl + hkl_size) &&
std::is_sorted(ref, ref + ref_size)) {
// cf. for_matching_reflections()
const Miller* a = hkl;
const Miller* b = ref;
while (a != hkl + hkl_size && b != ref + ref_size) {
if (*a == *b)
pos[b++ - ref] = static_cast<int>(a++ - hkl);
else if (*a < *b)
++a;
else
++b;
}
} else {
std::unordered_map<Miller, int, MillerHash> hkl_index;
for (int i = 0; i != (int)hkl_size; ++i)
hkl_index.emplace(hkl[i], i);
for (size_t i = 0; i != ref_size; ++i) {
auto it = hkl_index.find(ref[i]);
if (it != hkl_index.end())
pos[i] = it->second;
}
}
}
HklMatch(const std::vector<Miller>& hkl, const std::vector<Miller>& ref)
: HklMatch(hkl.data(), hkl.size(), ref.data(), ref.size()) {}
template <typename T> std::vector<T> aligned_(const T* v, size_t size, T nan) {
if (size != hkl_size)
fail("HklMatch.aligned(): wrong data, size differs");
std::vector<T> result(pos.size());
for (size_t i = 0; i != pos.size(); ++i)
result[i] = pos[i] >= 0 ? v[pos[i]] : nan;
return result;
}
template <typename T> std::vector<T> aligned(const std::vector<T>& v, T nan) {
return aligned_(v.data(), v.size(), nan);
}
};
void add_hkl(nb::module_& m) {
nb::class_<ReflnBlock> pyReflnBlock(m, "ReflnBlock");
nb::bind_vector<std::vector<ReflnBlock>, rv_ri>(m, "ReflnBlocks");
pyReflnBlock
.def_ro("block", &ReflnBlock::block)
.def_ro("entry_id", &ReflnBlock::entry_id)
.def_ro("cell", &ReflnBlock::cell)
.def_ro("spacegroup", &ReflnBlock::spacegroup)
.def_ro("wavelength", &ReflnBlock::wavelength)
.def_ro("default_loop", &ReflnBlock::default_loop)
.def("column_labels", &ReflnBlock::column_labels)
.def("make_int_array",
[](ReflnBlock& self, const std::string& tag, int null) {
return numpy_array_from_vector(self.make_vector(tag, null));
}, nb::arg("tag"), nb::arg("null"))
.def("make_float_array",
[](ReflnBlock& self, const std::string& tag, double null) {
return numpy_array_from_vector(self.make_vector(tag, null));
}, nb::arg("tag"), nb::arg("null")=NAN)
.def("make_miller_array", [](ReflnBlock& self) {
return py_array2d_from_vector(self.make_miller_vector());
})
.def("make_1_d2_array", [](ReflnBlock& self) {
return numpy_array_from_vector(self.make_1_d2_vector());
})
.def("make_d_array", [](ReflnBlock& self) {
return numpy_array_from_vector(self.make_d_vector());
})
.def("get_size_for_hkl",
[](const ReflnBlock& self,
std::array<int,3> min_size, double sample_rate) {
return get_size_for_hkl(ReflnDataProxy(self), min_size, sample_rate);
}, nb::arg("min_size")=std::array<int,3>{{0,0,0}},
nb::arg("sample_rate")=0.)
.def("data_fits_into", [](const ReflnBlock& self, std::array<int,3> size) {
return data_fits_into(ReflnDataProxy(self), size);
}, nb::arg("size"))
.def("get_f_phi_on_grid", [](const ReflnBlock& self,
const std::string& f_col,
const std::string& phi_col,
std::array<int, 3> size,
bool half_l, AxisOrder order) {
size_t f_idx = self.get_column_index(f_col);
size_t phi_idx = self.get_column_index(phi_col);
FPhiProxy<ReflnDataProxy> fphi(ReflnDataProxy{self}, f_idx, phi_idx);
return get_f_phi_on_grid<float>(fphi, size, half_l, order);
}, nb::arg("f"), nb::arg("phi"), nb::arg("size"),
nb::arg("half_l")=false, nb::arg("order")=AxisOrder::XYZ)
.def("get_value_on_grid", [](const ReflnBlock& self,
const std::string& column,
std::array<int, 3> size,
bool half_l, AxisOrder order) {
size_t col_idx = self.get_column_index(column);
return get_value_on_grid<float>(ReflnDataProxy(self), col_idx,
size, half_l, order);
}, nb::arg("column"), nb::arg("size"), nb::arg("half_l")=false,
nb::arg("order")=AxisOrder::XYZ)
.def("transform_f_phi_to_map", [](const ReflnBlock& self,
const std::string& f_col,
const std::string& phi_col,
std::array<int, 3> min_size,
std::array<int, 3> exact_size,
double sample_rate,
AxisOrder order) {
size_t f_idx = self.get_column_index(f_col);
size_t phi_idx = self.get_column_index(phi_col);
FPhiProxy<ReflnDataProxy> fphi(ReflnDataProxy{self}, f_idx, phi_idx);
return transform_f_phi_to_map2<float>(fphi, min_size, sample_rate,
exact_size, order);
}, nb::arg("f"), nb::arg("phi"),
nb::arg("min_size")=std::array<int,3>{{0,0,0}},
nb::arg("exact_size")=std::array<int,3>{{0,0,0}},
nb::arg("sample_rate")=0.,
nb::arg("order")=AxisOrder::XYZ)
.def("get_float", &make_asu_data<float, ReflnBlock>,
nb::arg("col"), nb::arg("as_is")=false)
.def("get_int", &make_asu_data<int, ReflnBlock>,
nb::arg("col"), nb::arg("as_is")=false)
.def("get_f_phi", [](const ReflnBlock& self, const std::string& f_col,
const std::string& phi_col,
bool as_is) {
return make_asu_data<std::complex<float>, 2>(self, {f_col, phi_col}, as_is);
}, nb::arg("f"), nb::arg("phi"), nb::arg("as_is")=false)
.def("get_value_sigma", [](const ReflnBlock& self, const std::string& f_col,
const std::string& sigma_col,
bool as_is) {
return make_asu_data<ValueSigma<float>, 2>(self, {f_col, sigma_col}, as_is);
}, nb::arg("f"), nb::arg("sigma"), nb::arg("as_is")=false)
.def("is_merged", &ReflnBlock::is_merged)
.def("is_unmerged", &ReflnBlock::is_unmerged) // deprecated
.def("use_unmerged", &ReflnBlock::use_unmerged)
.def("__bool__", [](const ReflnBlock& self) { return self.ok(); })
.def("__repr__", [](const ReflnBlock& self) {
std::string s = cat("<gemmi.ReflnBlock ", self.block.name, " with ");
if (self.default_loop)
cat_to(s, self.default_loop->width(), " x ", self.default_loop->length());
else
s += " no ";
s += " loop>";
return s;
});
m.def("as_refln_blocks",
[](cif::Document& d) { return as_refln_blocks(std::move(d.blocks)); });
m.def("hkl_cif_as_refln_block", &hkl_cif_as_refln_block, nb::arg("block"));
m.def("transform_f_phi_grid_to_map", [](FPhiGrid<float> grid) {
return transform_f_phi_grid_to_map<float>(std::move(grid));
}, nb::arg("grid"));
m.def("transform_map_to_f_phi", &transform_map_to_f_phi<float>,
nb::arg("map"), nb::arg("half_l")=false, nb::arg("use_scale")=true);
m.def("cromer_liberman", [](int z, double energy) {
std::pair<double, double> r;
r.first = cromer_liberman(z, energy, &r.second);
return r;
}, nb::arg("z"), nb::arg("energy"));
m.def("count_reflections", &count_reflections,
nb::arg("cell"), nb::arg("spacegroup"), nb::arg("dmin"),
nb::arg("dmax")=0., nb::arg("unique")=true);
m.def("make_miller_array", [](const UnitCell& cell, const SpaceGroup* sg,
double dmin, double dmax, bool unique) {
return py_array2d_from_vector(gemmi::make_miller_vector(cell, sg, dmin, dmax, unique));
}, nb::arg("cell"), nb::arg("spacegroup"), nb::arg("dmin"),
nb::arg("dmax")=0., nb::arg("unique")=true);
nb::class_<CifToMtz>(m, "CifToMtz")
.def(nb::init<>())
.def_rw("title", &CifToMtz::title)
.def_rw("history", &CifToMtz::history)
.def_rw("spec_lines", &CifToMtz::spec_lines)
.def("convert_block_to_mtz", &CifToMtz::convert_block_to_mtz,
nb::arg("rblock"), nb::arg("logger")=nb::make_tuple(nb::none(), 6))
;
nb::class_<MtzToCif>(m, "MtzToCif")
.def(nb::init<>())
.def_rw("spec_lines", &MtzToCif::spec_lines)
.def_rw("with_comments", &MtzToCif::with_comments)
.def_rw("with_history", &MtzToCif::with_history)
.def_rw("skip_empty", &MtzToCif::skip_empty)
.def_rw("skip_negative_sigi", &MtzToCif::skip_negative_sigi)
.def_rw("wavelength", &MtzToCif::wavelength)
.def_rw("free_flag_value", &MtzToCif::free_flag_value)
.def("write_cif_to_string", [](MtzToCif& self, const Mtz& mtz, const Mtz* mtz2) {
std::ostringstream out;
self.write_cif(mtz, mtz2, nullptr, out);
return out.str();
}, nb::arg("mtz"), nb::arg("mtz2")=nb::none())
;
m.def("validate_merged_intensities", &validate_merged_intensities,
nb::arg(), nb::arg(), nb::arg("relaxed_check")=false, nb::arg("logger")=nb::none());
m.def("get_software_from_mtz_history", &get_software_from_mtz_history);
nb::enum_<DataType>(m, "DataType")
.value("Unknown", DataType::Unknown)
.value("Unmerged", DataType::Unmerged)
.value("Mean", DataType::Mean)
.value("Anomalous", DataType::Anomalous)
.value("MergedMA", DataType::MergedMA)
.value("MergedAM", DataType::MergedAM)
.value("UAM", DataType::UAM)
;
m.def("check_data_type_under_symmetry", [](const ReflnBlock& data) {
return check_data_type_under_symmetry(ReflnDataProxy(data));
});
m.def("check_data_type_under_symmetry", [](const Mtz& data) {
return check_data_type_under_symmetry(MtzDataProxy{data});
});
nb::class_<MergingStats>(m, "MergingStats")
.def_ro("all_refl", &MergingStats::all_refl)
.def_ro("unique_refl", &MergingStats::unique_refl)
.def_ro("stats_refl", &MergingStats::stats_refl)
.def("r_merge", &MergingStats::r_merge)
.def("r_meas", &MergingStats::r_meas)
.def("r_pim", &MergingStats::r_pim)
.def("cc_half", &MergingStats::cc_half)
.def("cc_star", &MergingStats::cc_star)
;
nb::class_<Intensities>(m, "Intensities")
.def(nb::init<>())
.def("clone", [](const Intensities& self) {return new Intensities(self); })
.def("__len__", [](const Intensities& self) { return self.data.size(); })
.def_rw("spacegroup", &Intensities::spacegroup)
.def_rw("unit_cell", &Intensities::unit_cell)
.def_rw("type", &Intensities::type)
.def("resolution_range", &Intensities::resolution_range)
.def("remove_systematic_absences", &Intensities::remove_systematic_absences)
.def("sort", &Intensities::sort)
.def("merge_in_place", &Intensities::merge_in_place, nb::arg("new_type"))
.def("merged", &Intensities::merged, nb::arg("new_type"))
.def("calculate_merging_stats", &Intensities::calculate_merging_stats,
nb::arg("binner").none(), nb::arg("use_weights")='Y')
.def("prepare_for_merging", &Intensities::prepare_for_merging)
.def("calculate_correlation", &Intensities::calculate_correlation)
.def("import_mtz", &Intensities::import_mtz,
nb::arg(), nb::arg("type")=DataType::Unknown)
.def("import_xds", &Intensities::import_xds)
.def("import_refln_block", &Intensities::import_refln_block,
nb::arg(), nb::arg("type")=DataType::Unknown)
.def("prepare_merged_mtz", &Intensities::prepare_merged_mtz,
nb::arg("with_nobs"))
.def_prop_ro("miller_array", [](Intensities& self) {
int64_t stride = static_cast<int64_t>(sizeof(Intensities::Refl) / sizeof(int));
return nb::ndarray<nb::numpy, int, nb::shape<-1,3>>(
&self.data.data()->hkl[0], {self.data.size(), 3},
nb::handle(), {stride, 1});
}, nb::rv_policy::reference_internal)
.def_prop_ro("value_array", [](Intensities& self) {
return vector_member_array(self.data, &Intensities::Refl::value);
//const Intensities::Refl* data = self.data.data();
//nb::ssize_t stride = (const char*)(data+1) - (const char*)data;
//return nb::array_t<double>({(nb::ssize_t)self.data.size()}, {stride},
// &data->value, nb::cast(self));
}, nb::rv_policy::reference_internal)
.def_prop_ro("sigma_array", [](Intensities& self) {
return vector_member_array(self.data, &Intensities::Refl::sigma);
}, nb::rv_policy::reference_internal)
.def_prop_ro("nobs_array", [](Intensities& self) {
return vector_member_array(self.data, &Intensities::Refl::nobs);
}, nb::rv_policy::reference_internal)
.def_prop_ro("isign_array", [](Intensities& self) {
return vector_member_array(self.data, &Intensities::Refl::isign);
}, nb::rv_policy::reference_internal)
.def("set_data", [](Intensities& self,
const UnitCell& unit_cell,
const SpaceGroup* sg,
const cpu_miller_array& hkl,
const cpu_array<double>& values,
const cpu_array<double>& sigmas) {
auto h = hkl.view();
auto v = values.view();
auto s = sigmas.view();
if (h.shape(0) != v.shape(0) || h.shape(0) != s.shape(0))
throw std::domain_error("arrays have different lengths");
self.unit_cell = unit_cell;
self.spacegroup = sg;
self.data.clear();
self.data.reserve(h.shape(0));
for (size_t i = 0; i < h.shape(0); ++i)
self.add_if_valid({h(i, 0), h(i, 1), h(i, 2)}, 0, 0, v(i), s(i));
self.type = DataType::Unmerged;
self.switch_to_asu_indices();
}, nb::arg("cell"), nb::arg("sg").none(false),
nb::arg("miller_array"), nb::arg("value_array"), nb::arg("sigma_array"))
;
nb::class_<Binner> binner(m, "Binner");
nb::enum_<Binner::Method>(binner, "Method")
.value("EqualCount", Binner::Method::EqualCount)
.value("Dstar", Binner::Method::Dstar)
.value("Dstar2", Binner::Method::Dstar2)
.value("Dstar3", Binner::Method::Dstar3)
;
binner
.def(nb::init<>())
.def("setup", [](Binner& self, int nbins, Binner::Method method,
const Mtz& mtz, const UnitCell* cell) {
self.setup(nbins, method, MtzDataProxy{mtz}, cell);
}, nb::arg("nbins"), nb::arg("method"), nb::arg("mtz"), nb::arg("cell")=nb::none())
.def("setup", [](Binner& self, int nbins, Binner::Method method,
const ReflnBlock& r, const UnitCell* cell) {
self.setup(nbins, method, ReflnDataProxy(r), cell);
}, nb::arg("nbins"), nb::arg("method"), nb::arg("r"), nb::arg("cell")=nb::none())
.def("setup", [](Binner& self, int nbins, Binner::Method method,
const Intensities& intensities) {
self.setup(nbins, method, gemmi::IntensitiesDataProxy{intensities});
}, nb::arg("nbins"), nb::arg("method"), nb::arg("intensities"))
.def("setup", [](Binner& self, int nbins, Binner::Method method,
const cpu_miller_array& hkl, const UnitCell* cell) {
auto h = hkl.view();
std::vector<double> inv_d2(h.shape(0));
if (cell)
for (size_t i = 0; i < inv_d2.size(); ++i)
inv_d2[i] = cell->calculate_1_d2_double(h(i, 0), h(i, 1), h(i, 2));
self.setup_from_1_d2(nbins, method, std::move(inv_d2), cell);
}, nb::arg("nbins"), nb::arg("method"), nb::arg("hkl"), nb::arg("cell"))
.def("setup_from_1_d2", [](Binner& self, int nbins, Binner::Method method,
const cpu_c_array<double>& inv_d2, const UnitCell* cell) {
double* ptr = inv_d2.data();
auto len = inv_d2.shape(0);
self.setup_from_1_d2(nbins, method, std::vector<double>(ptr, ptr+len), cell);
}, nb::arg("nbins"), nb::arg("method"), nb::arg("inv_d2"), nb::arg("cell"))
.def("get_bin", &Binner::get_bin)
.def("get_bins", [](Binner& self, const Mtz& mtz) {
return numpy_array_from_vector(self.get_bins(MtzDataProxy{mtz}));
})
.def("get_bins", [](Binner& self, const ReflnBlock& r) {
return numpy_array_from_vector(self.get_bins(ReflnDataProxy(r)));
})
.def("get_bins", [](Binner& self, const cpu_miller_array& hkl) {
if (hkl.stride(1) != 1 || hkl.stride(0) < 3)
throw std::domain_error("hkl array must be contiguous");
struct { // cf. MtzDataProxy
size_t size_;
size_t stride_;
int* data_;
size_t size() const noexcept { return size_; }
size_t stride() const noexcept { return stride_; }
Miller get_hkl(size_t offset) const noexcept {
return {data_[offset], data_[offset+1], data_[offset+2]};
}
} proxy{hkl.size(), (size_t) hkl.stride(0), hkl.data()};
return numpy_array_from_vector(self.get_bins(proxy));
})
.def("get_bins_from_1_d2", [](Binner& self, const cpu_c_array<double>& inv_d2) {
return numpy_array_from_vector(self.get_bins_from_1_d2(inv_d2.data(), inv_d2.shape(0)));
})
.def("dmin_of_bin", &Binner::dmin_of_bin)
.def("dmax_of_bin", &Binner::dmax_of_bin)
.def_prop_ro("size", &Binner::size)
.def_ro("limits", &Binner::limits)
.def_rw("cell", &Binner::cell)
.def_ro("min_1_d2", &Binner::min_1_d2)
.def_ro("max_1_d2", &Binner::max_1_d2)
;
m.def("combine_correlations", &combine_correlations);
m.def("calculate_amplitude_normalizers",
[](const Mtz& mtz, const std::string& f_col, const Binner& binner) {
const Mtz::Column& f = mtz.get_column_with_label(f_col);
return numpy_array_from_vector(
calculate_amplitude_normalizers(MtzDataProxy{mtz}, f.idx, binner));
});
nb::class_<HklMatch>(m, "HklMatch")
.def("__init__", [](HklMatch* p, const cpu_c_miller_array& hkl,
const cpu_c_miller_array& ref) {
static_assert(sizeof(Miller) == 3 * sizeof(int), "sizeof(Miller) problem");
// NOLINTBEGIN(bugprone-casting-through-void)
new(p) HklMatch(static_cast<Miller*>((void*)hkl.data()), hkl.shape(0),
static_cast<Miller*>((void*)ref.data()), ref.shape(0));
// NOLINTEND(bugprone-casting-through-void)
}, nb::arg("hkl"), nb::arg("ref"))
.def("aligned", [](HklMatch& self, const cpu_c_array<double>& vec) {
return numpy_array_from_vector(self.aligned_(vec.data(), vec.size(), (double)NAN));
})
.def_ro("pos", &HklMatch::pos)
;
}
|