1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
// Copyright 2019 Global Phasing Ltd.
#include "common.h"
#include "array.h"
#include "make_iterator.h"
#include <nanobind/stl/bind_vector.h>
#include <nanobind/stl/array.h>
#include <nanobind/stl/string.h>
#include <nanobind/stl/vector.h>
#include "gemmi/mtz.hpp"
#include "gemmi/fourier.hpp"
using namespace gemmi;
NB_MAKE_OPAQUE(std::vector<Mtz::Dataset>)
NB_MAKE_OPAQUE(std::vector<Mtz::Column>)
NB_MAKE_OPAQUE(std::vector<Mtz::Batch>)
namespace {
template<typename T>
struct VectorRef {
std::vector<T>& v;
VectorRef(std::vector<T>& vec) : v(vec) {}
};
// Minimal std::vector bindings, for Batch::ints and Batch::floats.
// Don't allow the user to resize the vector, only to get and set values.
template<typename T>
void bind_wrapped_vector(nb::handle scope, const char* name) {
using SizeType = typename std::vector<T>::size_type;
using DiffType = typename std::vector<T>::difference_type;
auto wrap_idx = [&](DiffType i, SizeType length) -> SizeType {
SizeType idx = (i >= 0 ? (SizeType)i : (SizeType)i + length);
if (idx >= length)
throw nb::index_error();
return idx;
};
using VR = VectorRef<T>;
nb::class_<VR>(scope, name)
.def("__getitem__", [&](VR& r, DiffType i) { return r.v[wrap_idx(i, r.v.size())]; })
.def("__setitem__", [&](VR& r, DiffType i, T x) { r.v[wrap_idx(i, r.v.size())] = x; })
.def("__len__", [](const VR& r) { return r.v.size(); })
;
}
template<typename Func>
auto make_new_column(const Mtz& mtz, int dataset, Func func) {
if (!mtz.has_data())
throw std::runtime_error("MTZ: the data must be read first");
const UnitCell& cell = mtz.get_cell(dataset);
if (!cell.is_crystal())
throw std::runtime_error("MTZ: unknown unit cell parameters");
size_t stride = mtz.columns.size();
size_t n = (size_t) mtz.nreflections;
auto numpy_arr = make_numpy_array<float>({n});
float* arr = numpy_arr.data();
const float* h = mtz.data.data();
for (size_t i = 0; i < n; ++i, h += stride)
arr[i] = func(cell, h[0], h[1], h[2]);
return numpy_arr;
}
auto mtz_to_array(Mtz& self) {
size_t nrow = self.has_data() ? (size_t) self.nreflections : 0;
size_t ncol = self.columns.size();
return nb::ndarray<nb::numpy, float, nb::ndim<2>>(self.data.data(), {nrow, ncol}, nb::handle());
}
auto column_to_array(Mtz::Column& self) {
return nb::ndarray<nb::numpy, float, nb::ndim<1>>(self.parent->data.data() + self.idx,
{(size_t)self.size()},
nb::handle(),
{(int64_t) self.stride()});
}
} // anonymous namespace
void add_mtz(nb::module_& m) {
nb::class_<Mtz> mtz(m, "Mtz");
nb::class_<Mtz::Dataset> pyMtzDataset(mtz, "Dataset");
nb::class_<Mtz::Column> pyMtzColumn(mtz, "Column");
nb::class_<Mtz::Batch> pyMtzBatch(mtz, "Batch");
nb::bind_vector<std::vector<Mtz::Dataset>, rv_ri>(m, "MtzDatasets");
nb::bind_vector<std::vector<Mtz::Column>, rv_ri>(m, "MtzColumns");
nb::bind_vector<std::vector<Mtz::Batch>, rv_ri>(m, "MtzBatches");
bind_wrapped_vector<int>(m, "BatchInts");
bind_wrapped_vector<float>(m, "BatchFloats");
mtz
.def(nb::init<bool>(), nb::arg("with_base")=false)
.def_prop_ro("array", &mtz_to_array, nb::rv_policy::reference_internal)
.def("__array__", [](nb::handle_t<Mtz>& h, nb::handle dtype, nb::handle copy) {
return handle_numpy_array_args(h.attr("array"), dtype, copy);
}, nb::arg("dtype")=nb::none(), nb::arg("copy")=nb::none())
.def_rw("title", &Mtz::title)
.def_rw("nreflections", &Mtz::nreflections)
.def_rw("sort_order", &Mtz::sort_order)
.def_rw("min_1_d2", &Mtz::min_1_d2)
.def_rw("max_1_d2", &Mtz::max_1_d2)
.def_rw("valm", &Mtz::valm)
.def_ro("nsymop", &Mtz::nsymop)
.def_rw("cell", &Mtz::cell)
.def_rw("spacegroup", &Mtz::spacegroup, nb::arg().none())
.def_ro("spacegroup_name", &Mtz::spacegroup_name)
.def_ro("spacegroup_number", &Mtz::spacegroup_number)
.def_rw("datasets", &Mtz::datasets)
.def_rw("columns", &Mtz::columns)
.def_rw("batches", &Mtz::batches)
.def_rw("history", &Mtz::history)
.def_rw("appended_text", &Mtz::appended_text)
.def("set_logging", [](Mtz& self, Logger&& logger) {
self.logger = std::move(logger);
}, nb::arg().none())
.def("resolution_high", &Mtz::resolution_high)
.def("resolution_low", &Mtz::resolution_low)
.def("dataset", (Mtz::Dataset& (Mtz::*)(int)) &Mtz::dataset,
nb::arg("id"))
.def("count", &Mtz::count, nb::arg("label"))
.def("column_with_label",
(Mtz::Column* (Mtz::*)(const std::string&, const Mtz::Dataset*, char))
&Mtz::column_with_label,
nb::arg("label"), nb::arg("dataset")=nb::none(), nb::arg("type")='*',
nb::rv_policy::reference_internal)
.def("rfree_column", (Mtz::Column* (Mtz::*)()) &Mtz::rfree_column,
nb::rv_policy::reference_internal)
.def("columns_with_type", &Mtz::columns_with_type,
nb::arg("type"), nb::rv_policy::reference_internal)
.def("column_labels", [](const Mtz& self) {
std::vector<std::string> labels;
labels.reserve(self.columns.size());
for (const Mtz::Column& c : self.columns)
labels.push_back(c.label);
return labels;
})
.def("get_cell", (UnitCell& (Mtz::*)(int)) &Mtz::get_cell,
nb::arg("dataset")=-1)
.def("set_cell_for_all", &Mtz::set_cell_for_all)
.def("make_miller_array", [](const Mtz& self) {
size_t n = (size_t) self.nreflections;
auto numpy_arr = make_numpy_array<int>({n, 3});
int* arr = numpy_arr.data();
for (size_t i = 0; i < n; ++i)
for (size_t j = 0; j != 3; ++j)
*arr++ = (int) self.data[self.columns.size() * i + j];
return numpy_arr;
})
.def("make_1_d2_array", [](const Mtz& mtz, int dataset) {
return make_new_column(mtz, dataset,
[](const UnitCell& cell, float h, float k, float l) noexcept {
return (float) cell.calculate_1_d2_double(h, k, l);
});
}, nb::arg("dataset")=-1)
.def("make_d_array", [](const Mtz& mtz, int dataset) {
return make_new_column(mtz, dataset,
[](const UnitCell& cell, float h, float k, float l) noexcept {
double _1_d2 = cell.calculate_1_d2_double(h, k, l);
return (float) (1.0 / std::sqrt(_1_d2));
});
}, nb::arg("dataset")=-1)
.def("get_size_for_hkl",
[](const Mtz& self, std::array<int,3> min_size, double sample_rate) {
return get_size_for_hkl(MtzDataProxy{self}, min_size, sample_rate);
}, nb::arg("min_size")=std::array<int,3>{{0,0,0}},
nb::arg("sample_rate")=0.)
.def("data_fits_into", [](const Mtz& self, std::array<int,3> size) {
return data_fits_into(MtzDataProxy{self}, size);
}, nb::arg("size"))
.def("get_f_phi_on_grid", [](const Mtz& self,
const std::string& f_col,
const std::string& phi_col,
std::array<int, 3> size,
bool half_l,
AxisOrder order) {
const Mtz::Column& f = self.get_column_with_label(f_col);
const Mtz::Column& phi = self.get_column_with_label(phi_col);
FPhiProxy<MtzDataProxy> fphi(MtzDataProxy{self}, f.idx, phi.idx);
return get_f_phi_on_grid<float>(fphi, size, half_l, order);
}, nb::arg("f"), nb::arg("phi"), nb::arg("size"),
nb::arg("half_l")=false, nb::arg("order")=AxisOrder::XYZ)
.def("get_value_on_grid", [](const Mtz& self,
const std::string& label,
std::array<int, 3> size,
bool half_l,
AxisOrder order) {
const Mtz::Column& col = self.get_column_with_label(label);
return get_value_on_grid<float>(MtzDataProxy{self}, col.idx,
size, half_l, order);
}, nb::arg("label"), nb::arg("size"), nb::arg("half_l")=false,
nb::arg("order")=AxisOrder::XYZ)
.def("transform_f_phi_to_map", [](const Mtz& self,
const std::string& f_col,
const std::string& phi_col,
std::array<int, 3> min_size,
std::array<int, 3> exact_size,
double sample_rate,
AxisOrder order) {
const Mtz::Column& f = self.get_column_with_label(f_col);
const Mtz::Column& phi = self.get_column_with_label(phi_col);
FPhiProxy<MtzDataProxy> fphi(MtzDataProxy{self}, f.idx, phi.idx);
return transform_f_phi_to_map2<float>(fphi, min_size, sample_rate,
exact_size, order);
}, nb::arg("f"), nb::arg("phi"),
nb::arg("min_size")=std::array<int,3>{{0,0,0}},
nb::arg("exact_size")=std::array<int,3>{{0,0,0}},
nb::arg("sample_rate")=0.,
nb::arg("order")=AxisOrder::XYZ)
.def("get_float", &make_asu_data<float, Mtz>,
nb::arg("col"), nb::arg("as_is")=false)
.def("get_int", &make_asu_data<int, Mtz>,
nb::arg("col"), nb::arg("as_is")=false)
.def("get_f_phi", [](const Mtz& self, const std::string& f_col,
const std::string& phi_col,
bool as_is) {
return make_asu_data<std::complex<float>, 2>(self, {f_col, phi_col}, as_is);
}, nb::arg("f"), nb::arg("phi"), nb::arg("as_is")=false)
.def("get_value_sigma", [](const Mtz& self, const std::string& f_col,
const std::string& sigma_col,
bool as_is) {
return make_asu_data<ValueSigma<float>, 2>(self, {f_col, sigma_col}, as_is);
}, nb::arg("f"), nb::arg("sigma"), nb::arg("as_is")=false)
.def("add_dataset", &Mtz::add_dataset, nb::arg("name"),
nb::rv_policy::reference_internal)
.def("add_column", &Mtz::add_column, nb::arg("label"), nb::arg("type"),
nb::arg("dataset_id")=-1, nb::arg("pos")=-1, nb::arg("expand_data")=true,
nb::rv_policy::reference_internal)
.def("replace_column", &Mtz::replace_column,
nb::arg("dest_idx"), nb::arg("src_col"),
nb::arg("trailing_cols")=std::vector<std::string>(),
nb::rv_policy::reference_internal)
.def("copy_column", &Mtz::copy_column,
nb::arg("dest_idx"), nb::arg("src_col"),
nb::arg("trailing_cols")=std::vector<std::string>(),
nb::rv_policy::reference_internal)
.def("remove_column", &Mtz::remove_column, nb::arg("index"))
.def("set_data", [](Mtz& self, const AsuData<std::complex<float>>& asu_data) {
if (self.columns.size() != 5)
fail("Mtz.set_data(): Mtz must have 5 columns to put H,K,L,F,Phi.");
self.nreflections = (int) asu_data.v.size();
self.data.clear();
add_asu_f_phi_to_float_vector(self.data, asu_data);
}, nb::arg("asu_data"))
.def("set_data", [](Mtz& self, const AsuData<float>& asu_data) {
if (self.columns.size() != 4)
fail("Mtz.set_data(): Mtz must have 4 columns.");
self.nreflections = (int) asu_data.v.size();
self.data.clear();
self.data.reserve(self.data.size() + asu_data.v.size() * 4);
for (const auto& item : asu_data.v) {
for (int i = 0; i != 3; ++i)
self.data.push_back((float) item.hkl[i]);
self.data.push_back(item.value);
}
}, nb::arg("asu_data"))
.def("set_data", [](Mtz& self, const nb::ndarray<float, nb::ndim<2>>& arr) {
size_t nrow = arr.shape(0);
size_t ncol = arr.shape(1);
if (ncol != self.columns.size())
fail("Mtz.set_data(): expected " +
std::to_string(self.columns.size()) + " columns.");
self.nreflections = (int) nrow;
self.data.resize(nrow * ncol);
auto r = arr.view();
for (size_t row = 0; row < nrow; row++)
for (size_t col = 0; col < ncol; col++)
self.data[row*ncol+col] = r(row, col);
}, nb::arg("array"))
.def("filtered", [](Mtz& self, const cpu_array<bool>& selection) {
if (!self.has_data())
throw std::runtime_error("Mtz.filtered(): no data, read it first");
auto v = selection.view();
if (v.shape(0) != (size_t) self.nreflections)
throw nb::value_error("boolean array must match the number of reflections");
std::vector<float> saved_data;
saved_data.swap(self.data); // avoid copying data
Mtz ret(self);
saved_data.swap(self.data);
ret.nreflections = 0;
for (size_t i = 0; i < v.shape(0); ++i)
ret.nreflections += v(i) ? 1 : 0;
size_t ncol = ret.columns.size();
ret.data.reserve(ncol * ret.nreflections);
for (size_t i = 0, pos = 0; i < v.shape(0); ++i, pos += ncol)
if (v(i))
ret.data.insert(ret.data.end(), &self.data[pos], &self.data[pos + ncol]);
return ret;
})
.def("update_reso", &Mtz::update_reso)
.def("sort", &Mtz::sort, nb::arg("use_first")=3)
.def("ensure_asu", &Mtz::ensure_asu, nb::arg("tnt_asu")=false)
.def("switch_to_original_hkl", &Mtz::switch_to_original_hkl)
.def("switch_to_asu_hkl", &Mtz::switch_to_asu_hkl)
.def("write_to_file", &Mtz::write_to_file, nb::arg("path"))
.def("write_to_bytes", [](const Mtz& self) {
size_t nbytes = self.size_to_write();
nb::bytes obj(nullptr, nbytes);
char* data = const_cast<char*>(obj.c_str());
self.write_to_buffer(data, nbytes);
return obj;
})
.def("reindex", &Mtz::reindex, nb::arg("op"))
.def("expand_to_p1", &Mtz::expand_to_p1)
// handy for testing, but slow and can't handle duplicated column names
.def("row_as_dict", [](const Mtz& self, const Miller& hkl) {
size_t offset = self.find_offset_of_hkl(hkl);
nb::dict data;
if (offset != (size_t)-1)
for (const Mtz::Column& column : self.columns)
data[column.label.c_str()] = self.data[offset++];
return data;
}, nb::arg("hkl"))
.def("__repr__", [](const Mtz& self) {
return cat("<gemmi.Mtz with ", self.columns.size(), " columns, ",
self.nreflections, " reflections>");
});
pyMtzDataset
.def_rw("id", &Mtz::Dataset::id)
.def_rw("project_name", &Mtz::Dataset::project_name)
.def_rw("crystal_name", &Mtz::Dataset::crystal_name)
.def_rw("dataset_name", &Mtz::Dataset::dataset_name)
.def_rw("cell", &Mtz::Dataset::cell)
.def_rw("wavelength", &Mtz::Dataset::wavelength)
.def("__repr__", [](const Mtz::Dataset& self) {
return cat("<gemmi.Mtz.Dataset ", self.id, ' ', self.project_name,
'/', self.crystal_name, '/', self.dataset_name, '>');
})
;
pyMtzColumn
.def_prop_ro("array", &column_to_array, nb::rv_policy::reference_internal)
.def("__array__", [](nb::handle_t<Mtz::Column>& h, nb::handle dtype, nb::handle copy) {
return handle_numpy_array_args(h.attr("array"), dtype, copy);
}, nb::arg("dtype")=nb::none(), nb::arg("copy")=nb::none())
.def_prop_ro("dataset",
(Mtz::Dataset& (Mtz::Column::*)()) &Mtz::Column::dataset)
.def_rw("dataset_id", &Mtz::Column::dataset_id)
.def_rw("type", &Mtz::Column::type)
.def_rw("label", &Mtz::Column::label)
.def_rw("min_value", &Mtz::Column::min_value)
.def_rw("max_value", &Mtz::Column::max_value)
.def_rw("source", &Mtz::Column::source)
.def_rw("idx", &Mtz::Column::idx)
.def("is_integer", &Mtz::Column::is_integer)
.def("__len__", &Mtz::Column::size)
.def("__getitem__", [](const Mtz::Column& self, int index) -> float {
return self.at(index >= 0 ? index : index + self.size());
}, nb::arg("index"))
.def("__iter__", [](Mtz::Column& self) {
return usual_iterator(self, self);
}, nb::keep_alive<0, 1>())
.def("__repr__", [](const Mtz::Column& self) {
return cat("<gemmi.Mtz.Column ", self.label, " type ", self.type, '>');
})
;
pyMtzBatch
.def(nb::init<>())
.def_rw("number", &Mtz::Batch::number)
.def_rw("title", &Mtz::Batch::title)
.def_prop_rw("ints",
[](Mtz::Batch& self) { return VectorRef<int>(self.ints); },
[](Mtz::Batch& self, const VectorRef<int>& x) { self.ints = x.v; },
nb::rv_policy::reference_internal)
.def_prop_rw("floats",
[](Mtz::Batch& self) { return VectorRef<float>(self.floats); },
[](Mtz::Batch& self, const VectorRef<float>& x) { self.floats = x.v; },
nb::rv_policy::reference_internal)
.def_rw("axes", &Mtz::Batch::axes)
.def_prop_rw("cell", &Mtz::Batch::get_cell, &Mtz::Batch::set_cell)
.def_prop_rw("dataset_id", &Mtz::Batch::dataset_id, &Mtz::Batch::set_dataset_id)
.def_prop_rw("wavelength", &Mtz::Batch::wavelength, &Mtz::Batch::set_wavelength)
.def("clone", [](const Mtz::Batch& self) { return new Mtz::Batch(self); })
;
m.def("read_mtz_file", [](const std::string& path, Logger&& logging, bool with_data) {
std::unique_ptr<Mtz> mtz(new Mtz);
mtz->logger = std::move(logging);
mtz->read_file_gz(path, with_data);
return mtz.release();
}, nb::arg("path"), nb::arg("logging")=nb::none(), nb::arg("with_data")=true);
}
|