1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
// Copyright 2020 Global Phasing Ltd.
#include "common.h"
#include "array.h"
#include "make_iterator.h"
#include <nanobind/stl/array.h>
#include <nanobind/stl/complex.h>
#include <nanobind/stl/string.h>
#include "gemmi/recgrid.hpp"
#include "gemmi/fourier.hpp" // for get_size_for_hkl, get_f_phi_on_grid
#include "gemmi/sprintf.hpp"
using namespace gemmi;
namespace {
template<typename T, typename Func>
auto make_new_column(const AsuData<T>& asu_data, Func f) {
if (!asu_data.unit_cell().is_crystal())
throw std::runtime_error("AsuData: unknown unit cell parameters");
auto numpy_arr = make_numpy_array<float>({asu_data.size()});
float* arr = numpy_arr.data();
for (size_t i = 0; i < asu_data.size(); ++i)
arr[i] = static_cast<float>(f(asu_data.unit_cell(), asu_data.get_hkl(i)));
return numpy_arr;
}
template<typename T> void add_to_asu_data(T&) {}
template<> void add_to_asu_data(nb::class_<AsuData<std::complex<float>>>& cl) {
using AsuData = AsuData<std::complex<float>>;
cl.def("get_size_for_hkl", &get_size_for_hkl<AsuData>,
nb::arg("min_size")=std::array<int,3>{{0,0,0}}, nb::arg("sample_rate")=0.);
cl.def("data_fits_into", &data_fits_into<AsuData>, nb::arg("size"));
cl.def("get_f_phi_on_grid", get_f_phi_on_grid<float, AsuData>,
nb::arg("size"), nb::arg("half_l")=false, nb::arg("order")=AxisOrder::XYZ);
cl.def("transform_f_phi_to_map", &transform_f_phi_to_map2<float, AsuData>,
nb::arg("min_size")=std::array<int,3>{{0,0,0}},
nb::arg("sample_rate")=0.,
nb::arg("exact_size")=std::array<int,3>{{0,0,0}},
nb::arg("order")=AxisOrder::XYZ);
cl.def("calculate_correlation", [](const AsuData& self, const AsuData& other) {
return calculate_hkl_complex_correlation(self.v, other.v);
});
}
template<> void add_to_asu_data(nb::class_<AsuData<float>>& cl) {
using AsuData = AsuData<float>;
cl.def("calculate_correlation", [](const AsuData& self, const AsuData& other) {
return calculate_hkl_value_correlation(self.v, other.v);
});
}
template<> void add_to_asu_data(nb::class_<AsuData<ValueSigma<float>>>& cl) {
cl.def("discard_by_sigma_ratio", &discard_by_sigma_ratio<float>);
}
template<typename T> struct array_for {
using type = cpu_c_array<T>;
};
template<> struct array_for<ValueSigma<float>> {
using type = nb::ndarray<float, nb::shape<-1, 2>, nb::device::cpu, nb::c_contig>;
};
template<typename T>
void add_asudata(nb::module_& m, const std::string& prefix) {
nb::class_<HklValue<T>>(m, (prefix + "HklValue").c_str())
.def_ro("hkl", &HklValue<T>::hkl)
.def_rw("value", &HklValue<T>::value)
.def("__repr__", [prefix](const HklValue<T>& self) {
return nb::str("<gemmi.{}HklValue ({},{},{}) {}>")
.format(prefix, self.hkl[0], self.hkl[1], self.hkl[2], self.value);
});
using AsuData = AsuData<T>;
nb::class_<AsuData> asu_data(m, (prefix + "AsuData").c_str());
asu_data
.def("__init__", [](AsuData* p, const UnitCell& unit_cell, const SpaceGroup* sg,
const cpu_miller_array& hkl, const typename array_for<T>::type& values) {
new(p) AsuData;
auto h = hkl.view();
auto v = values.view();
if (h.shape(0) != v.shape(0))
throw std::domain_error("error: arrays have different lengths");
p->spacegroup_ = sg;
p->unit_cell_ = unit_cell;
p->unit_cell_.set_cell_images_from_spacegroup(p->spacegroup_);
p->v.reserve(h.shape(0));
for (size_t i = 0; i < h.shape(0); ++i) {
Miller hkl {h(i, 0), h(i, 1), h(i, 2)};
if constexpr (std::is_same<T, ValueSigma<float>>::value)
p->v.push_back({hkl, T{v(i, 0), v(i, 1)}});
else
p->v.push_back({hkl, v(i)});
}
}, nb::arg("cell"), nb::arg("sg")/*.none(false)*/,
nb::arg("miller_array"), nb::arg("value_array"))
.def("__iter__", [](AsuData& self) {
return usual_iterator(self, self.v);
}, nb::keep_alive<0, 1>())
.def("__len__", [](const AsuData& self) { return self.v.size(); })
.def("__getitem__", [](AsuData& self, int index) -> HklValue<T>& {
return self.v.at(normalize_index(index, self.v));
}, nb::arg("index"), nb::rv_policy::reference_internal)
.def_rw("spacegroup", &AsuData::spacegroup_)
.def_rw("unit_cell", &AsuData::unit_cell_)
.def_prop_ro("miller_array", [](AsuData& self) {
// cf. vector_member_array
int64_t stride = int64_t(sizeof(HklValue<T>) / sizeof(int));
return nb::ndarray<nb::numpy, int, nb::shape<-1,3>>(
&self.v[0].hkl[0], {self.v.size(), 3}, nb::handle(), {stride, 1});
}, nb::rv_policy::reference_internal)
.def_prop_ro("value_array", [](AsuData& self) {
if constexpr (std::is_same<T, ValueSigma<float>>::value) {
auto stride = sizeof(ValueSigma<HklValue<float>>) / sizeof(float);
return nb::ndarray<nb::numpy, float, nb::shape<-1, 2>>(
&(self.v.data()->value.value),
{self.v.size(), 2},
nb::handle(),
{(int64_t)stride, 1});
} else {
return vector_member_array(self.v, &HklValue<T>::value);
}
}, nb::rv_policy::reference_internal)
.def("make_1_d2_array", [](const AsuData& asu_data) {
return make_new_column(asu_data, [](const UnitCell& cell, Miller hkl) {
return cell.calculate_1_d2(hkl);
});
})
.def("make_d_array", [](const AsuData& asu_data) {
return make_new_column(asu_data, [](const UnitCell& cell, Miller hkl) {
return cell.calculate_d(hkl);
});
})
.def("count_equal_values", [](const AsuData& self, const AsuData& other) {
return count_equal_values(self.v, other.v);
})
.def("ensure_sorted", &AsuData::ensure_sorted)
.def("ensure_asu", &AsuData::ensure_asu, nb::arg("tnt_asu")=false)
.def("copy", [](const AsuData& self) {
return new AsuData(self);
})
.def("__repr__", [prefix](const AsuData& self) {
return cat("<gemmi.", prefix, "AsuData with ", self.v.size(), " values>");
});
add_to_asu_data(asu_data);
}
template<typename TA, typename TG=TA>
void add_asudata_and_recgrid(nb::module_& m,
const std::string& prefix_asu,
const std::string& rgrid_name) {
using RecGr = ReciprocalGrid<TG>;
// needed before add_asudata for ComplexAsuData.get_f_phi_on_grid
nb::class_<RecGr, GridBase<TG>> recgrid(m, rgrid_name.c_str());
add_asudata<TA>(m, prefix_asu);
recgrid
.def_ro("half_l", &RecGr::half_l)
.def(nb::init<>())
.def("__init__", [](RecGr* grid, int nx, int ny, int nz) {
new(grid) RecGr();
grid->set_size_without_checking(nx, ny, nz);
grid->axis_order = AxisOrder::XYZ;
}, nb::arg("nx"), nb::arg("ny"), nb::arg("nz"))
.def("__init__", [](RecGr* grid,
const nb::ndarray<TG, nb::ndim<3>, nb::device::cpu>& arr,
const UnitCell *cell, const SpaceGroup* sg) {
auto r = arr.view();
new(grid) RecGr();
grid->set_size_without_checking((int)r.shape(0), (int)r.shape(1), (int)r.shape(2));
grid->axis_order = AxisOrder::XYZ;
for (size_t k = 0; k < r.shape(2); ++k)
for (size_t j = 0; j < r.shape(1); ++j)
for (size_t i = 0; i < r.shape(0); ++i)
grid->data[grid->index_q(i, j, k)] = r(i, j, k);
if (cell)
grid->unit_cell = *cell;
if (sg)
grid->spacegroup = sg;
}, nb::arg().noconvert(), nb::arg("cell")=nb::none(), nb::arg("spacegroup")=nb::none())
.def("get_value", &RecGr::get_value)
.def("get_value_or_zero", &RecGr::get_value_or_zero)
.def("set_value", &RecGr::set_value)
.def("to_hkl", &RecGr::to_hkl)
.def("calculate_1_d2", &RecGr::calculate_1_d2)
.def("calculate_d", &RecGr::calculate_d)
.def("get_value_by_hkl", [](RecGr &self, const cpu_miller_array& hkl, double unblur,
bool mott_bethe, TA mott_bethe_000) {
auto h = hkl.view();
auto vals = make_numpy_array<TA>({h.shape(0)});
TA* ptr = vals.data();
for (size_t i = 0; i < h.shape(0); ++i) {
Miller mi{h(i, 0), h(i, 1), h(i, 2)};
if (mott_bethe && mi[0] == 0 && mi[1] == 0 && mi[2] == 0)
ptr[i] = mott_bethe_000;
else
ptr[i] = self.get_value_by_hkl(mi, unblur, mott_bethe);
}
return vals;
}, nb::arg("hkl"), nb::arg("unblur")=0, nb::arg("mott_bethe")=false,
nb::arg("mott_bethe_000")=0)
.def("prepare_asu_data", &RecGr::template prepare_asu_data<TA>,
nb::arg("dmin")=0., nb::arg("unblur")=0.,
nb::arg("with_000")=false, nb::arg("with_sys_abs")=false,
nb::arg("mott_bethe")=false)
.def("__repr__", [=](const RecGr& self) {
return cat("<gemmi.", rgrid_name, '(', self.nu, ", ", self.nv, ", ", self.nw, ")>");
});
}
} // anonymous namespace
void add_recgrid(nb::module_& m) {
using VS = ValueSigma<float>;
nb::class_<VS>(m, "ValueSigma")
.def_rw("value", &VS::value)
.def_rw("sigma", &VS::sigma)
.def("__repr__", [](const VS& self) {
char buf[64];
snprintf_z(buf, 64, "<gemmi.ValueSigma(%g, %g)>", self.value, self.sigma);
return std::string(buf);
});
nb::class_<ComplexCorrelation>(m, "ComplexCorrelation")
.def_ro("n", &ComplexCorrelation::n)
.def("coefficient", &ComplexCorrelation::coefficient)
.def("mean_ratio", &ComplexCorrelation::mean_ratio)
;
add_asudata_and_recgrid<int, int8_t>(m, "Int", "ReciprocalInt8Grid");
add_asudata_and_recgrid<float>(m, "Float", "ReciprocalFloatGrid");
add_asudata_and_recgrid<std::complex<float>>(m, "Complex", "ReciprocalComplexGrid");
add_asudata<VS>(m, "ValueSigma");
}
|