1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
// Copyright 2017 Global Phasing Ltd.
#include "gemmi/symmetry.hpp"
#include "common.h"
#include "array.h" // for miller_function
#include <nanobind/make_iterator.h>
#include <nanobind/operators.h>
#include <nanobind/stl/array.h>
#include <nanobind/stl/string.h>
#include <nanobind/stl/vector.h>
using namespace gemmi;
void add_symmetry(nb::module_& m) {
nb::enum_<CrystalSystem>(m, "CrystalSystem")
.value("Triclinic", CrystalSystem::Triclinic)
.value("Monoclinic", CrystalSystem::Monoclinic)
.value("Orthorhombic", CrystalSystem::Orthorhombic)
.value("Tetragonal", CrystalSystem::Tetragonal)
.value("Trigonal", CrystalSystem::Trigonal)
.value("Hexagonal", CrystalSystem::Hexagonal)
.value("Cubic", CrystalSystem::Cubic)
;
nb::class_<Op>(m, "Op")
.def("__init__", [](Op* op) {
new(op) Op(Op::identity());
})
.def("__init__", [](Op* op, const std::string& s) {
new(op) Op(parse_triplet(s));
})
.def_prop_ro_static("DEN", [](const nb::object&) { return Op::DEN; },
"Denominator (integer) for the translation vector.")
.def_rw("rot", &Op::rot, "3x3 integer matrix.")
.def_rw("tran", &Op::tran,
"Numerators (integers) of the translation vector. Denominator DEN=24.")
.def("is_hkl", &Op::is_hkl)
.def("as_hkl", &Op::as_hkl)
.def("as_xyz", &Op::as_xyz)
.def("triplet", &Op::triplet, nb::arg("style")=' ')
.def("inverse", &Op::inverse, "Returns inverted operator.")
.def("wrap", &Op::wrap, "Wrap the translation part to [0,1)")
.def("translated", &Op::translated, nb::arg("a"), "Adds a to tran")
.def("transposed_rot", &Op::transposed_rot)
.def("det_rot", &Op::det_rot, "Determinant of the 3x3 matrix.")
.def("rot_type", &Op::rot_type)
.def("combine", &Op::combine, nb::arg("b"),
"Combine two symmetry operations.")
.def("seitz", [](const Op& self) {
auto arr = self.int_seitz();
auto mat = nb::list();
nb::object fr = nb::module_::import_("fractions").attr("Fraction");
for (int i = 0; i < 4; ++i) {
auto row = nb::list();
for (int j = 0; j < 4; ++j) {
auto v = arr[i][j];
if (i == 3 || v == 0)
row.append(v);
else if (std::abs(v) == Op::DEN)
row.append(v / Op::DEN);
else
row.append(fr(v, Op::DEN + 0)); // +0 to avoid linker error
}
mat.append(row);
}
return mat;
}, "Returns Seitz matrix (fractions)")
.def("float_seitz", &Op::float_seitz, "Returns Seitz matrix (floats)")
.def("apply_to_xyz", &Op::apply_to_xyz, nb::arg("xyz"))
.def("apply_to_hkl", &Op::apply_to_hkl, nb::arg("hkl"))
.def("phase_shift", &Op::phase_shift, nb::arg("hkl"))
.def(nb::self * nb::self)
.def("__mul__", [](const Op &a, const std::string& b) { return a * parse_triplet(b); },
nb::is_operator())
.def("__rmul__", [](const Op& a, const std::string& b) { return parse_triplet(b) * a; },
nb::is_operator())
.def(nb::self == nb::self) // NOLINT(misc-redundant-expression)
.def("__eq__", [](const Op& a, const std::string& b) { return a == parse_triplet(b); },
nb::is_operator(), nb::sig("def __eq__(self, arg: object, /) -> bool"))
.def("__copy__", [](const Op& self) { return Op(self); })
.def("__deepcopy__", [](const Op& self, const nb::dict&) { return Op(self); }, nb::arg("memo"))
.def("__hash__", [](const Op& self) { return std::hash<Op>()(self); })
.def("__repr__", [](const Op& self) {
return "<gemmi.Op(\"" + self.triplet() + "\")>";
});
m.def("parse_triplet", &parse_triplet, nb::arg("triplet"), nb::arg("notation")=' ',
"Parse coordinate triplet into gemmi.Op.");
m.def("parse_triplet_part", [](const std::string& s) {
char notation = ' ';
return parse_triplet_part(s, notation);
});
nb::class_<GroupOps>(m, "GroupOps")
.def("__init__", [](GroupOps* p, const std::vector<Op>& ops) {
new(p) GroupOps(split_centering_vectors(ops));
})
.def("__iter__", [](const GroupOps& self) {
return nb::make_iterator(nb::type<GroupOps>(), "iterator", self);
}, nb::keep_alive<0, 1>())
.def("__eq__", [](const GroupOps &a, const GroupOps &b) { return a.is_same_as(b); },
nb::is_operator(), nb::sig("def __eq__(self, arg: object, /) -> bool"))
.def("__len__", [](const GroupOps& g) { return g.order(); })
.def("__deepcopy__", [](const GroupOps& g, const nb::dict&) { return GroupOps(g); },
nb::arg("memo"))
.def_rw("sym_ops", &GroupOps::sym_ops,
"Symmetry operations (to be combined with centering vectors).")
.def_rw("cen_ops", &GroupOps::cen_ops, "Centering vectors.")
.def("add_missing_elements", &GroupOps::add_missing_elements)
.def("find_centering", &GroupOps::find_centering)
.def("has_same_centring", &GroupOps::has_same_centring)
.def("has_same_rotations", &GroupOps::has_same_rotations)
.def("is_centrosymmetric", &GroupOps::is_centrosymmetric)
.def("is_reflection_centric", &GroupOps::is_reflection_centric)
.def("centric_flag_array", [](const GroupOps& g, const cpu_miller_array& hkl) {
return miller_function<bool>(g, &GroupOps::is_reflection_centric, hkl);
})
.def("epsilon_factor_without_centering", &GroupOps::epsilon_factor_without_centering)
.def("epsilon_factor", &GroupOps::epsilon_factor)
.def("epsilon_factor_array", [](const GroupOps& g, const cpu_miller_array& hkl) {
return miller_function<int>(g, &GroupOps::epsilon_factor, hkl);
})
.def("epsilon_factor_without_centering_array", [](const GroupOps& g,
const cpu_miller_array& hkl) {
return miller_function<int>(g, &GroupOps::epsilon_factor_without_centering, hkl);
})
.def("is_systematically_absent", &GroupOps::is_systematically_absent)
.def("systematic_absences", [](const GroupOps& g, const cpu_miller_array& hkl) {
return miller_function<bool>(g, &GroupOps::is_systematically_absent, hkl);
})
.def("find_grid_factors", &GroupOps::find_grid_factors,
"Minimal multiplicity for real-space grid (e.g. 1,1,6 for P61).")
.def("change_basis_forward", &GroupOps::change_basis_forward, nb::arg("cob"),
"Applies the change-of-basis operator (in place).")
.def("change_basis_backward", &GroupOps::change_basis_backward, nb::arg("cob"),
"Applies inverse of the change-of-basis operator (in place).")
.def("derive_symmorphic", &GroupOps::derive_symmorphic)
.def("add_inversion", &GroupOps::add_inversion)
;
nb::class_<SpaceGroup>(m, "SpaceGroup")
.def(nb::new_([](int n) {
int main_table_length = int(sizeof(spacegroup_tables::main) / sizeof(SpaceGroup));
// a second meaning of SpaceGroup(n), for internal use in __reduce__
if (n < INT_MIN + main_table_length)
return &spacegroup_tables::main[n - INT_MIN];
return &get_spacegroup_by_number(n);
}), nb::arg("ccp4"), nb::rv_policy::reference)
.def(nb::new_([](const std::string& s) {
return &get_spacegroup_by_name(s);
}), nb::arg("hm"), nb::rv_policy::reference)
.def_ro("number", &SpaceGroup::number, "number 1-230.")
.def_ro("ccp4", &SpaceGroup::ccp4, "ccp4 number")
// Intel Compiler would not compile .def_ro("hm", ...),
// the difference with hm, qualifier and hall is that they are char[N]
.def_prop_ro("hm", [](const SpaceGroup &self) -> const char* {
return self.hm;
}, "Hermann-Mauguin name")
.def_ro("ext", &SpaceGroup::ext, "Extension (1, 2, H, R or none)")
.def_prop_ro("qualifier", [](const SpaceGroup &s) -> const char* {
return s.qualifier;
}, "e.g. 'cab'")
.def_prop_ro("hall", [](const SpaceGroup &self) -> const char* {
return self.hall;
}, "Hall symbol")
.def_prop_ro("basisop", &SpaceGroup::basisop)
.def("xhm", &SpaceGroup::xhm, "extended Hermann-Mauguin name")
.def("centring_type", &SpaceGroup::centring_type)
.def("short_name", &SpaceGroup::short_name,
"H-M name w/o spaces and with 1's removed in '1 ... 1'.")
.def("is_enantiomorphic", &SpaceGroup::is_enantiomorphic)
.def("is_sohncke", &SpaceGroup::is_sohncke)
.def("is_symmorphic", &SpaceGroup::is_symmorphic)
.def("point_group_hm", &SpaceGroup::point_group_hm,
"Returns H-M name of the point group.")
.def("laue_str", &SpaceGroup::laue_str,
"Returns name of the Laue class (for centrosymmetric groups "
"the same as point_group_hm).")
.def("crystal_system", &SpaceGroup::crystal_system)
.def("crystal_system_str", &SpaceGroup::crystal_system_str,
"Returns lower-case name of the crystal system.")
.def("is_centrosymmetric", &SpaceGroup::is_centrosymmetric)
.def("monoclinic_unique_axis", &SpaceGroup::monoclinic_unique_axis)
.def("is_reference_setting", &SpaceGroup::is_reference_setting)
.def("centred_to_primitive", &SpaceGroup::centred_to_primitive)
.def("change_of_hand_op", &SpaceGroup::change_of_hand_op)
.def("operations", &SpaceGroup::operations, "Group of operations")
.def("switch_to_asu", [](const SpaceGroup& sg,
const nb::ndarray<int, nb::shape<-1,-1>, nb::device::cpu>& hkl) {
auto h = hkl.view();
if (h.shape(1) < 3)
throw std::domain_error("error: the size of the second dimension < 3");
GroupOps gops = sg.operations();
ReciprocalAsu asu(&sg);
for (size_t i = 0; i < h.shape(0); ++i) {
Op::Miller hkl = asu.to_asu({{h(i, 0), h(i, 1), h(i, 2)}}, gops).first;
for (size_t j = 0; j != 3; ++j)
h(i, j) = hkl[j];
}
}, nb::arg("miller_array").noconvert())
// Check equality by comparing Hall symbol strings.
// In Python, SpaceGroup always points to an entry in spacegroup_tables::main,
// so Hall symbols are consistent. The same settings with different H-M names
// (see space group 65 in the ITB list) are considered equal.
.def("__eq__", [](const SpaceGroup& a, const SpaceGroup& b) {
return strcmp(a.hall, b.hall) == 0;
}, nb::is_operator(), nb::sig("def __eq__(self, arg: object, /) -> bool"))
.def("__reduce__", [](const SpaceGroup& self) {
// faster than serializing self.xhm()
std::ptrdiff_t pos = &self - spacegroup_tables::main;
int main_table_length = int(sizeof(spacegroup_tables::main) / sizeof(SpaceGroup));
(void) main_table_length;
assert(pos >= 0 && pos < main_table_length);
return nb::make_tuple(nb::type<SpaceGroup>(), nb::make_tuple(INT_MIN + (int)pos));
})
.def("__repr__", [](const SpaceGroup &self) {
return "<gemmi.SpaceGroup(\"" + self.xhm() + "\")>";
});
nb::class_<ReciprocalAsu>(m, "ReciprocalAsu")
.def(nb::init<const SpaceGroup*, bool>(), nb::arg(), nb::arg("tnt")=false)
.def("is_in", &ReciprocalAsu::is_in, nb::arg("hkl"))
.def("condition_str", &ReciprocalAsu::condition_str)
.def("to_asu",
nb::overload_cast<const Op::Miller&, const GroupOps&>(&ReciprocalAsu::to_asu, nb::const_),
nb::arg("hkl"), nb::arg("group_ops"))
;
nb::handle mod = m;
m.def("spacegroup_table", [mod]() {
return nb::make_iterator<nb::rv_policy::reference>(mod, "spacegroup_iterator",
spacegroup_tables::main);
});
m.def("spacegroup_table_itb", [mod]() {
return nb::make_iterator<nb::rv_policy::reference>(mod, "itb_spacegroup_iterator",
spacegroup_tables::main + 0,
spacegroup_tables::main + 530);
});
m.def("generators_from_hall", &generators_from_hall, nb::arg("hall"),
"Parse Hall notation.");
m.def("symops_from_hall", &symops_from_hall, nb::arg("hall"),
"Parse Hall notation.");
m.def("find_spacegroup_by_number", &find_spacegroup_by_number,
nb::arg("ccp4"), nb::rv_policy::reference,
"Returns space-group of given number.");
m.def("find_spacegroup_by_name", &find_spacegroup_by_name,
nb::arg("hm"), nb::arg("alpha")=0., nb::arg("gamma")=0., nb::arg("prefer")="",
nb::rv_policy::reference,
"Returns space-group with given name.");
m.def("get_spacegroup_reference_setting", &get_spacegroup_reference_setting,
nb::arg("number"), nb::rv_policy::reference);
m.def("find_spacegroup_by_ops", &find_spacegroup_by_ops,
nb::arg("group_ops"), nb::rv_policy::reference,
"Returns space-group with identical operations.");
m.def("seitz_to_op", &seitz_to_op);
}
|