File: unitcell.cpp

package info (click to toggle)
gemmi 0.7.4%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,644 kB
  • sloc: cpp: 64,445; python: 5,425; ansic: 4,545; sh: 374; makefile: 112; javascript: 86; f90: 42
file content (411 lines) | stat: -rw-r--r-- 17,765 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
// Copyright 2017 Global Phasing Ltd.

#include "gemmi/unitcell.hpp"
#include "gemmi/cellred.hpp"  // GruberVector
#include "gemmi/twin.hpp"  // find_lattice_2fold_ops
#include "gemmi/sprintf.hpp"  // snprintf_z

#include <array>
#include "common.h"
#include "array.h"  // numpy_array_from_vector, miller_function
#include "serial.h"  // for getstate, setstate
#include <nanobind/operators.h>
#include <nanobind/stl/array.h>
#include <nanobind/stl/pair.h>    // for find_lattice_2fold_ops
#include <nanobind/stl/string.h>
#include <nanobind/stl/vector.h>  // for UnitCell::images

using namespace gemmi;

namespace {

std::string triple(double x, double y, double z) {
  char buf[128];
  auto r = [](double d) { return std::fabs(d) < 1e-15 ? 0 : d; };
  snprintf_z(buf, 128, "%g, %g, %g", r(x), r(y), r(z));
  return std::string(buf);
}

void mat33_from_list(Mat33& self, std::array<std::array<double,3>,3>& m) {
  for (int i = 0; i < 3; ++i)
    for (int j = 0; j < 3; ++j)
      self.a[i][j] = m[i][j];
}

nb::tuple make_six_tuple(const std::array<double,6>& v) {
  return nb::make_tuple(v[0], v[1], v[2], v[3], v[4], v[5]);
}

auto mat33_to_array(Mat33& self) {
  return nb::ndarray<nb::numpy, double, nb::shape<3,3>, nb::c_contig>(
          &self.a[0][0], {3, 3}, nb::handle());
}

template<typename T> void add_smat33(nb::module_& m, const char* name) {
  using M = SMat33<T>;
  nb::class_<M>(m, name)
    .def("__init__", [](M* p, T u11, T u22, T u33, T u12, T u13, T u23) {
           new(p) M{u11, u22, u33, u12, u13, u23};
         }, nb::arg("u11"), nb::arg("u22"), nb::arg("u33"),
            nb::arg("u12"), nb::arg("u13"), nb::arg("u23"))
    .def_rw("u11", &M::u11)
    .def_rw("u22", &M::u22)
    .def_rw("u33", &M::u33)
    .def_rw("u12", &M::u12)
    .def_rw("u13", &M::u13)
    .def_rw("u23", &M::u23)
    .def("elements_pdb", &M::elements_pdb)
    .def("elements_voigt", &M::elements_voigt)
    .def("as_mat33", &M::as_mat33)
    .def("trace", &M::trace)
    .def("nonzero", &M::nonzero)
    .def("determinant", &M::determinant)
    .def("inverse", &M::inverse)
    .def("scaled", &M::template scaled<T>)
    .def("added_kI", &M::added_kI)
    .def("r_u_r", (double (M::*)(const Vec3&) const) &M::r_u_r)
    .def("r_u_r", [](const M& self, const cpu_miller_array& arr) {
        std::vector<T> v;
        size_t len = arr.shape(0);
        v.reserve(len);
        auto r = arr.view();
        for (size_t row = 0; row < len; ++row)
           v.push_back((T)self.r_u_r({r(row, 0), r(row, 1), r(row, 2)}));
        return numpy_array_from_vector(std::move(v));
    }, nb::arg().noconvert())
    .def("multiply", &M::multiply)
    .def(nb::self + nb::self)
    .def(nb::self - nb::self)  // NOLINT(misc-redundant-expression)
    .def("transformed_by", &M::template transformed_by<T>)
    .def("calculate_eigenvalues", &M::calculate_eigenvalues)
    .def("__repr__", [name](const M& m) {
        char buf[128];
        snprintf_z(buf, 128, "<gemmi.%s(%g, %g, %g, %g, %g, %g)>",
                   name, m.u11, m.u22, m.u33, m.u12, m.u13, m.u23);
        return std::string(buf);
    });
}

template<typename T> void add_box(nb::module_& m, const char* name) {
  using M = Box<T>;
  nb::class_<M>(m, name)
    .def(nb::init<>())
    .def_rw("minimum", &M::minimum)
    .def_rw("maximum", &M::maximum)
    .def("get_size", &M::get_size)
    .def("extend", &M::extend)
    .def("add_margin", &M::add_margin)
    ;
}

}  // anonymous namespace

void add_unitcell(nb::module_& m) {
  nb::class_<Vec3>(m, "Vec3")
    .def(nb::init<double,double,double>())
    .def_rw("x", &Vec3::x)
    .def_rw("y", &Vec3::y)
    .def_rw("z", &Vec3::z)
    .def("normalized", &Vec3::normalized)
    .def("dot", &Vec3::dot)
    .def("cross", &Vec3::cross)
    .def("length", &Vec3::length)
    .def("approx", &Vec3::approx, nb::arg("other"), nb::arg("epsilon"))
    .def("tolist", [](const Vec3& self) {
        return std::array<double,3>{{self.x, self.y, self.z}};
    })
    .def("fromlist", [](Vec3& self, std::array<double,3>& v) {
        self.x = v[0];
        self.y = v[1];
        self.z = v[2];
    })
    .def(nb::self + nb::self)
    .def(nb::self - nb::self)  // NOLINT(misc-redundant-expression)
    .def(nb::self += nb::self, nb::rv_policy::none)
    //.def(nb::self -= nb::self)  // Clang warning -Wself-assign-overloaded
    .def(operator-=(nb::self, nb::self), nb::rv_policy::none)
    .def(nb::self * float())
    .def(nb::self *= float(), nb::rv_policy::none)
    .def(float() * nb::self)
    .def(nb::self / float())
    .def(nb::self /= float(), nb::rv_policy::none)
    .def(-nb::self)
    .def("__getitem__", (double (Vec3::*)(int) const) &Vec3::at)
    .def("__setitem__", [](Vec3& self, int idx, double value) {
        self.at(idx) = value;
    })
    .def("__repr__", [](const Vec3& self) {
        return "<gemmi.Vec3(" + triple(self.x, self.y, self.z) + ")>";
    });
  nb::class_<Mat33> mat33(m, "Mat33");
  mat33
    .def(nb::init<>())
    .def("__init__", [](Mat33* mat, std::array<std::array<double,3>,3>& arr) {
        new(mat) Mat33();
        mat33_from_list(*mat, arr);
    })
    .def_prop_ro("array", &mat33_to_array, nb::rv_policy::reference_internal)
    .def("__array__", [](nb::handle_t<Mat33>& h, nb::handle dtype, nb::handle copy) {
        return handle_numpy_array_args(h.attr("array"), dtype, copy);
    }, nb::arg("dtype")=nb::none(), nb::arg("copy")=nb::none())

    .def("row_copy", &Mat33::row_copy)
    .def("column_copy", &Mat33::column_copy)
    .def(nb::self + nb::self)
    .def(nb::self - nb::self)  // NOLINT(misc-redundant-expression)
    .def("multiply", (Mat33 (Mat33::*)(const Mat33&) const) &Mat33::multiply)
    .def("multiply", (Vec3 (Mat33::*)(const Vec3&) const) &Mat33::multiply)
    .def("__matmul__", (Mat33 (Mat33::*)(const Mat33&) const) &Mat33::multiply, nb::is_operator())
    .def("__matmul__", (Vec3 (Mat33::*)(const Vec3&) const) &Mat33::multiply, nb::is_operator())
    .def("left_multiply", &Mat33::left_multiply)
    .def("multiply_by_diagonal", &Mat33::multiply_by_diagonal)
    .def("transpose", &Mat33::transpose)
    .def("trace", &Mat33::trace)
    .def("approx", &Mat33::approx, nb::arg("other"), nb::arg("epsilon"))
    .def("determinant", &Mat33::determinant)
    .def("inverse", &Mat33::inverse)
    .def("is_identity", &Mat33::is_identity)
    .def("tolist", [](const Mat33& mat) -> std::array<std::array<double,3>,3> {
        return {{{{mat[0][0], mat[0][1], mat[0][2]}},
                 {{mat[1][0], mat[1][1], mat[1][2]}},
                 {{mat[2][0], mat[2][1], mat[2][2]}}}};
    })
    .def("fromlist", mat33_from_list)
    .def("__repr__", [](const Mat33& self) {
        const auto& a = self.a;
        return "<gemmi.Mat33 [" + triple(a[0][0], a[0][1], a[0][2]) + "]\n"
               "             [" + triple(a[1][0], a[1][1], a[1][2]) + "]\n"
               "             [" + triple(a[2][0], a[2][1], a[2][2]) + "]>";
    });

  add_smat33<double>(m, "SMat33d");
  add_smat33<float>(m, "SMat33f");

  nb::class_<Transform> transform(m, "Transform");
  transform
    .def(nb::init<>())
    .def("__init__", [](Transform* tr, const Mat33& m, const Vec3& v) {
        new(tr) Transform();
        tr->mat = m;
        tr->vec = v;
    }, nb::arg("mat33"), nb::arg("vec3"))
    .def_ro("mat", &Transform::mat)
    .def_ro("vec", &Transform::vec)
    .def("inverse", &Transform::inverse)
    .def("apply", &Transform::apply)
    .def("combine", &Transform::combine)
    .def("__matmul__", &Transform::combine, nb::is_operator())
    .def("is_identity", &Transform::is_identity)
    .def("approx", &Transform::approx, nb::arg("other"), nb::arg("epsilon"));

  nb::class_<Position, Vec3>(m, "Position")
    .def(nb::init<double,double,double>())
    .def(nb::init<const Vec3&>())
    .def("dist", [](const Position& self, const Position& other) {
        return self.dist(other);
    })
    .def(nb::self + nb::self)
    .def(nb::self - nb::self)  // NOLINT(misc-redundant-expression)
    .def(nb::self += nb::self, nb::rv_policy::none)
    .def(operator-=(nb::self, nb::self), nb::rv_policy::none)
    .def(nb::self * float())
    .def(nb::self *= float(), nb::rv_policy::none)
    .def(float() * nb::self)
    .def(nb::self / float())
    .def(nb::self /= float(), nb::rv_policy::none)
    .def(-nb::self)
    .def("__repr__", [](const Position& self) {
        return "<gemmi.Position(" + triple(self.x, self.y, self.z) + ")>";
    });
  nb::class_<Fractional, Vec3>(m, "Fractional")
    .def(nb::init<double,double,double>())
    .def(nb::init<const Vec3&>())
    .def("wrap_to_unit", &Fractional::wrap_to_unit)
    .def("wrap_to_zero", &Fractional::wrap_to_zero)
    .def("__getitem__", (double (Fractional::*)(int) const) &Fractional::at)
    .def(nb::self + nb::self)
    .def(nb::self - nb::self)  // NOLINT(misc-redundant-expression)
    .def("__repr__", [](const Fractional& self) {
        return "<gemmi.Fractional(" + triple(self.x, self.y, self.z) + ")>";
    });

  add_box<Position>(m, "PositionBox");
  add_box<Fractional>(m, "FractionalBox");

  nb::class_<FTransform, Transform>(m, "FTransform")
    .def(nb::init<>())
    .def("apply", &FTransform::apply);

  nb::class_<NearestImage>(m, "NearestImage")
    .def("dist", &NearestImage::dist)
    .def("same_asu", &NearestImage::same_asu)
    .def("symmetry_code", &NearestImage::symmetry_code, nb::arg("underscore")=true)
    .def_ro("sym_idx", &NearestImage::sym_idx)
    .def_prop_ro("pbc_shift", [](const NearestImage& self) {
        return nb::make_tuple(self.pbc_shift[0], self.pbc_shift[1], self.pbc_shift[2]);
    })
    .def("__repr__", [](const NearestImage& self) {
        char buf[64];
        snprintf_z(buf, 64, "<gemmi.NearestImage %s in distance %.2f>",
                   self.symmetry_code(true).c_str(), self.dist());
        return std::string(buf);
    });

  nb::enum_<Asu>(m, "Asu")
    .value("Same", Asu::Same)
    .value("Different", Asu::Different)
    .value("Any", Asu::Any);

  nb::class_<UnitCell>(m, "UnitCell")
    .def(nb::init<>())
    .def(nb::init<double,double,double,double,double,double>(),
         nb::arg("a"), nb::arg("b"), nb::arg("c"),
         nb::arg("alpha"), nb::arg("beta"), nb::arg("gamma"))
    .def_ro("a", &UnitCell::a)
    .def_ro("b", &UnitCell::b)
    .def_ro("c", &UnitCell::c)
    .def_ro("alpha", &UnitCell::alpha)
    .def_ro("beta", &UnitCell::beta)
    .def_ro("gamma", &UnitCell::gamma)
    .def_ro("volume", &UnitCell::volume)
    .def_ro("explicit_matrices", &UnitCell::explicit_matrices)
    .def_ro("images", &UnitCell::images)
    .def_prop_ro("parameters", [](const UnitCell& u) {
        return nb::make_tuple(u.a, u.b, u.c, u.alpha, u.beta, u.gamma);
    })

    .def_ro("frac", &UnitCell::frac)
    .def_ro("orth", &UnitCell::orth)
    .def("set", &UnitCell::set)
    .def("changed_basis_forward", &UnitCell::changed_basis_forward,
         nb::arg("op"), nb::arg("set_images"))
    .def("changed_basis_backward", &UnitCell::changed_basis_backward,
         nb::arg("op"), nb::arg("set_images"))
    .def("is_compatible_with_spacegroup", &UnitCell::is_compatible_with_spacegroup,
         nb::arg("sg"), nb::arg("eps")=1e-3)
    .def("is_crystal", &UnitCell::is_crystal)
    .def("approx", [](const UnitCell& self, const UnitCell& o, double epsilon) {
        return self.approx(o, epsilon);
    }, nb::arg("other"), nb::arg("epsilon"))
    .def("is_similar", &UnitCell::is_similar,
         nb::arg("other"), nb::arg("rel"), nb::arg("deg"))
    .def("calculate_u_eq", &UnitCell::calculate_u_eq)
    .def("fractionalize", &UnitCell::fractionalize)
    .def("orthogonalize", &UnitCell::orthogonalize)
    .def("orthogonalize_box", &UnitCell::orthogonalize_box)
    .def("op_as_transform", &UnitCell::op_as_transform)
    .def("volume_per_image", &UnitCell::volume_per_image)
    .def("find_nearest_image", &UnitCell::find_nearest_image,
         nb::arg("ref"), nb::arg("pos"), nb::arg("asu")=Asu::Any)
    .def("find_nearest_pbc_image",
         (NearestImage (UnitCell::*)(const Fractional&, Fractional, int) const)
         &UnitCell::find_nearest_pbc_image,
         nb::arg("fref"), nb::arg("fpos"), nb::arg("image_idx")=0)
    .def("find_nearest_pbc_image",
         (NearestImage (UnitCell::*)(const Position&, const Position&, int) const)
         &UnitCell::find_nearest_pbc_image,
         nb::arg("ref"), nb::arg("pos"), nb::arg("image_idx")=0)
    .def("find_nearest_pbc_images", &UnitCell::find_nearest_pbc_images,
         nb::arg("fref"), nb::arg("dist"), nb::arg("fpos"), nb::arg("image_idx"))
    .def("find_nearest_pbc_position", &UnitCell::find_nearest_pbc_position,
         nb::arg("ref"), nb::arg("pos"), nb::arg("image_idx"), nb::arg("inverse")=false)
    .def("fract_image", &UnitCell::fract_image)
    .def("is_special_position",
         (int (UnitCell::*)(const Position&, double) const)
           &UnitCell::is_special_position,
         nb::arg("pos"), nb::arg("max_dist")=0.8)
    .def("is_special_position",
         (int (UnitCell::*)(const Fractional&, double) const)
           &UnitCell::is_special_position,
         nb::arg("fpos"), nb::arg("max_dist"))
    .def("calculate_1_d2", &UnitCell::calculate_1_d2, nb::arg("hkl"))
    .def("calculate_1_d2_array", [](const UnitCell& u, const cpu_miller_array& hkl) {
        return miller_function<double>(u, &UnitCell::calculate_1_d2, hkl);
    })
    .def("calculate_d", &UnitCell::calculate_d, nb::arg("hkl"))
    .def("calculate_d_array", [](const UnitCell& u, const cpu_miller_array& hkl) {
        return miller_function<double>(u, &UnitCell::calculate_d, hkl);
    })
    .def("metric_tensor", &UnitCell::metric_tensor)
    .def("reciprocal_metric_tensor", &UnitCell::reciprocal_metric_tensor)
    .def("reciprocal", &UnitCell::reciprocal)
    .def("get_hkl_limits", &UnitCell::get_hkl_limits, nb::arg("dmin"))
    .def("primitive_orth_matrix", &UnitCell::primitive_orth_matrix, nb::arg("centring_type"))
    // NOLINTNEXTLINE(misc-redundant-expression)
    .def(nb::self == nb::self, nb::sig("def __eq__(self, arg: object, /) -> bool"))
    .def("__getstate__", &getstate<UnitCell>)
    .def("__setstate__", &setstate<UnitCell>)
    .def("__repr__", [](const UnitCell& self) {
        return "<gemmi.UnitCell(" + triple(self.a, self.b, self.c)
             + ", " + triple(self.alpha, self.beta, self.gamma) + ")>";
    });

  nb::class_<SellingVector> selling_vector(m, "SellingVector");

  nb::class_<GruberVector>(m, "GruberVector")
    .def(nb::init<const std::array<double,6>&>())
    .def(nb::init<const UnitCell&, const SpaceGroup*, bool>(),
         nb::arg("cell"), nb::arg("sg").none(), nb::arg("track_change_of_basis")=false)
    .def(nb::init<const UnitCell&, char, bool>(),
         nb::arg("cell"), nb::arg("centring"), nb::arg("track_change_of_basis")=false)
    .def_prop_ro("parameters", [](const GruberVector& g) {
      return make_six_tuple(g.parameters());
    })
    .def("cell_parameters", [](const GruberVector& self) {
      return make_six_tuple(self.cell_parameters());
    })
    .def("get_cell",
         [](const GruberVector& self) { return new UnitCell(self.get_cell()); })
    .def_prop_ro("change_of_basis", [](const GruberVector& self) {
        return self.change_of_basis.get();
    }, nb::rv_policy::reference_internal)
    .def("selling", &GruberVector::selling)
    .def("is_normalized", &GruberVector::is_normalized)
    .def("is_buerger", &GruberVector::is_buerger, nb::arg("epsilon")=1e-9)
    .def("normalize", &GruberVector::normalize, nb::arg("epsilon")=1e-9)
    .def("buerger_reduce", &GruberVector::buerger_reduce)
    .def("niggli_step", &GruberVector::niggli_step, nb::arg("epsilon"))
    .def("niggli_reduce", &GruberVector::niggli_reduce,
         nb::arg("epsilon")=1e-9, nb::arg("iteration_limit")=100)
    .def("is_niggli", &GruberVector::is_niggli, nb::arg("epsilon")=1e-9)
    .def("__repr__", [](const GruberVector& self) {
        char buf[256];
        snprintf_z(buf, 256, "<gemmi.GruberVector((%.2f, %.2f, %.2f, %.2f, %.2f, %.2f))>",
                   self.A, self.B, self.C, self.xi, self.eta, self.zeta);
        return std::string(buf);
    });

  selling_vector
    .def(nb::init<const std::array<double,6>&>())
    .def(nb::init<const UnitCell&, const SpaceGroup*>())
    .def_prop_ro("parameters", [](const SellingVector& self) {
      return make_six_tuple(self.s);
    })
    .def("cell_parameters", [](const SellingVector& self) {
      return make_six_tuple(self.cell_parameters());
    })
    .def("get_cell",
         [](const SellingVector& self) { return new UnitCell(self.get_cell()); })
    .def("sum_b_squared", &SellingVector::sum_b_squared)
    .def("gruber", &SellingVector::gruber)
    .def("is_reduced", &SellingVector::is_reduced, nb::arg("epsilon")=1e-9)
    .def("reduce_step", &SellingVector::reduce_step, nb::arg("epsilon")=1e-9)
    .def("reduce", &SellingVector::reduce,
         nb::arg("epsilon")=1e-9, nb::arg("iteration_limit")=100)
    .def("sort", &SellingVector::sort, nb::arg("epsilon")=1e-9)
    .def("__repr__", [](const SellingVector& self) {
        char buf[256];
        snprintf_z(buf, 256, "<gemmi.SellingVector((%.2f, %.2f, %.2f, %.2f, %.2f, %.2f))>",
                   self.s[0], self.s[1], self.s[2], self.s[3], self.s[4], self.s[5]);
        return std::string(buf);
    });

  // twin.hpp
  m.def("find_lattice_2fold_ops", &find_lattice_2fold_ops,
        nb::arg("reduced_cell"), nb::arg("max_obliq"));
  m.def("find_lattice_symmetry_r", &find_lattice_symmetry_r);
  m.def("find_lattice_symmetry", &find_lattice_symmetry,
        nb::arg("cell"), nb::arg("centring"), nb::arg("max_obliq"));
  m.def("find_twin_laws", &find_twin_laws,
        nb::arg("cell"), nb::arg("sg"), nb::arg("max_obliq"), nb::arg("all_ops"));
}