File: main.cpp

package info (click to toggle)
gemmi 0.7.4%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,644 kB
  • sloc: cpp: 64,445; python: 5,425; ansic: 4,545; sh: 374; makefile: 112; javascript: 86; f90: 42
file content (185 lines) | stat: -rw-r--r-- 6,258 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#include <doctest/doctest.h>

#include <cstdlib>  // for rand
#include <climits>  // for INT_MIN, INT_MAX
#include <vector>
#include <gemmi/atox.hpp>
#include <gemmi/math.hpp>
#include <gemmi/it92.hpp>
#include <gemmi/util.hpp>  // for is_in_list
#include <gemmi/asudata.hpp>  // for ComplexCorrelation
#include <linalg.h>

static double draw() { return 10.0 * std::rand() / RAND_MAX - 5; }

static gemmi::Transform random_transform() {
  gemmi::Transform a;
  for (int i = 0; i < 3; ++i) {
    for (int j = 0; j < 3; ++j)
      a.mat[i][j] = draw();
    a.vec.at(i) = draw();
  }
  return a;
}

TEST_CASE("Transform::inverse") {
  std::srand(12345);
  gemmi::Transform tr = random_transform();
  linalg::mat<double,4,4> m44 = linalg::identity;
  for (int i = 0; i < 3; ++i) {
    for (int j = 0; j < 3; ++j)
      m44[i][j] = tr.mat[i][j];
    m44[i][3] = tr.vec.at(i);
  }
  linalg::mat<double,4,4> inv_m44 = linalg::inverse(m44);
  gemmi::Transform inv_tr = tr.inverse();
  CHECK_EQ(inv_m44[3][3], doctest::Approx(1.0));
  for (int i = 0; i < 3; ++i) {
    for (int j = 0; j < 3; ++j)
      CHECK_EQ(inv_tr.mat[i][j], doctest::Approx(inv_m44[i][j]));
    CHECK_EQ(inv_tr.vec.at(i), doctest::Approx(inv_m44[i][3]));
    CHECK_EQ(inv_m44[3][i], 0);
  }
}

TEST_CASE("SMat33::inverse") {
  gemmi::SMat33<double> sm{draw(), draw(), draw(), draw(), draw(), draw()};
  gemmi::Mat33 m = sm.as_mat33();
  CHECK_EQ(sm.determinant(), m.determinant());
  gemmi::Mat33 inv1 = m.inverse();
  gemmi::Mat33 inv2 = sm.inverse().as_mat33();
  for (int i = 0; i < 3; ++i)
    for (int j = 0; j < 3; ++j)
      CHECK(std::abs(inv1.a[i][j] - inv2.a[i][j]) < 1e-16);
}

TEST_CASE("Transform::combine") {
  std::srand(12345);
  gemmi::Transform a = random_transform();
  gemmi::Transform b = random_transform();
  gemmi::Vec3 v;
  for (int i = 0; i < 3; ++i)
    v.at(i) = draw();
  gemmi::Vec3 result1 = a.combine(b).apply(v);
  gemmi::Vec3 result2 = a.apply(b.apply(v));
  for (int i = 0; i < 3; ++i)
    CHECK_EQ(result1.at(i), doctest::Approx(result2.at(i)));
}

TEST_CASE("SMat33::smallest_eigenvalue") {
  auto ev = gemmi::SMat33<double>{3, 0, 3, 2, 4, 2}.calculate_eigenvalues();
  CHECK_EQ(ev[0], doctest::Approx(8));
  CHECK_EQ(ev[1], doctest::Approx(-1));
  CHECK_EQ(ev[2], doctest::Approx(-1));
  gemmi::SMat33<double> m2{3, 3, 5, 1, -1, -1};
  auto ev2 = m2.calculate_eigenvalues();
  CHECK_EQ(ev2[0], doctest::Approx(6));
  CHECK_EQ(ev2[1], doctest::Approx(3));
  CHECK_EQ(ev2[2], doctest::Approx(2));
}

TEST_CASE("Variance") {
  gemmi::Variance v;
  for (double x : {0.14, 0.08, 0.16, 0.12, 0.04})
    v.add_point(x);
  CHECK_EQ(v.for_sample(), 0.00232);
  CHECK_EQ(v.n, 5);
  CHECK_EQ(v.mean_x, 0.108);
}

TEST_CASE("Covariance") {
  gemmi::Covariance cov;
  cov.add_point(2.1, 8);
  cov.add_point(2.5, 12);
  cov.add_point(4.0, 14);
  cov.add_point(3.6, 10);
  CHECK_EQ(cov.n, 4);
  CHECK_EQ(cov.mean_x, 3.05);
  CHECK_EQ(cov.mean_y, 11);
  CHECK_EQ(cov.for_population(), doctest::Approx(1.15));
  CHECK_EQ(cov.for_sample(), doctest::Approx(1.53333));
}

TEST_CASE("Correlation") {
  gemmi::Correlation cor;
  cor.add_point(2.1, 8);
  cor.add_point(2.5, 12);
  CHECK_EQ(cor.n, 2);
  CHECK_EQ(cor.coefficient(), 1.0);
  cor.add_point(4.0, 14);
  cor.add_point(3.6, 10);
  CHECK_EQ(cor.n, 4);
  CHECK_EQ(cor.mean_x, 3.05);
  CHECK_EQ(cor.mean_y, 11);
  CHECK_EQ(cor.coefficient(), doctest::Approx(0.66257388));
  CHECK_EQ(cor.covariance(), doctest::Approx(1.15));
  CHECK_EQ(cor.x_variance(), doctest::Approx(0.6025));
  CHECK_EQ(cor.y_variance(), doctest::Approx(5));
  // scipy.stats.linregress([2.1, 2.5, 4.0, 3.6], [8, 12, 14, 10])
  CHECK_EQ(cor.slope(), doctest::Approx(1.9087136929460577));
  CHECK_EQ(cor.intercept(), doctest::Approx(5.178423236514524));
}

TEST_CASE("ComplexCorrelation") {
  gemmi::ComplexCorrelation cor;
  cor.add_point(std::complex<double>{1., 2.},   std::complex<double>{2., 2.});
  cor.add_point(std::complex<double>{2., 0.},   std::complex<double>{4., 0.});
  cor.add_point(std::complex<double>{3., -0.3}, std::complex<double>{7., -0.1});
  std::complex<double> cc = cor.coefficient();
  // compare with value from numpy.corrcoef
  CHECK(std::fabs(cc.real() - 0.8929758288830972) < 1e-15);
  CHECK(std::fabs(cc.imag() - -0.37799898875604704) < 1e-15);
}

TEST_CASE("string_to_int") {
  CHECK_EQ(gemmi::string_to_int(std::to_string(INT_MAX), true), INT_MAX);
  CHECK_EQ(gemmi::string_to_int(std::to_string(INT_MIN), true), INT_MIN);
  CHECK_EQ(gemmi::string_to_int("", false), 0);
}

TEST_CASE("is_in_list") {
  CHECK(gemmi::is_in_list("abc", "abc"));
  CHECK(gemmi::is_in_list("abc", "a,abc"));
  CHECK(gemmi::is_in_list("abc", "xyz,ab,abc,"));
  CHECK(!gemmi::is_in_list("abc", ",abcd"));
  CHECK(!gemmi::is_in_list("abc", "abc , abc"));
  CHECK(!gemmi::is_in_list("abc", "a,"));
}

TEST_CASE("IT92") {
  using Table = gemmi::IT92<double>;
  const Table::Coef& coef = Table::get(gemmi::El::Mg, 0);
  double B = 23.4;
  double r = 1.5;
  double dens1 = coef.calculate_density_iso(r*r, B);
  double dens2 = coef.precalculate_density_iso(B).calculate(r*r);
  CHECK_EQ(dens1, doctest::Approx(dens2));
  double U = B / (8 * gemmi::pi() * gemmi::pi());
  gemmi::SMat33<float> mat{(float)U, (float)U, (float)U, 0, 0, 0};
  gemmi::Vec3 v1(r, 0, 0);
  double dens3 = coef.calculate_density_aniso(v1, mat);
  CHECK_EQ(dens1, doctest::Approx(dens3));
  double dens4 = coef.precalculate_density_aniso_u(mat).calculate(v1);
  CHECK_EQ(dens1, doctest::Approx(dens4));
  double xr = r * std::sqrt(1./3);
  gemmi::Vec3 v2(xr, xr, xr);
  double dens5 = coef.calculate_density_aniso(v2, mat);
  CHECK_EQ(dens1, doctest::Approx(dens5));
  double dens6 = coef.precalculate_density_aniso_u(mat).calculate(v2);
  CHECK_EQ(dens1, doctest::Approx(dens6));

  double dens_a = coef.precalculate_density_iso(B, 0.8).calculate(r*r);
  double dens_b = coef.precalculate_density_aniso_u(mat, 0.8).calculate(v2);
  CHECK_EQ(dens_a, doctest::Approx(dens_b));
}

TEST_CASE("vector_Vec3") {
  // superpose_positions depends on the memory layout of Vec3/Position array.
  std::vector<gemmi::Vec3> vec(5);
  const double* x0 = &vec[0].x;
  const double* x1 = &vec[1].x;
  auto offset = x1 - x0;
  CHECK_EQ(offset, 3);
}