1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// fixedpoint_avx.h: optimized avx specializations of the templates
// in fixedpoint.h.
#ifndef GEMMLOWP_INTERNAL_FIXEDPOINT_AVX_H_
#define GEMMLOWP_INTERNAL_FIXEDPOINT_AVX_H_
#include <smmintrin.h>
#include "fixedpoint.h"
namespace gemmlowp {
template <>
struct FixedPointRawTypeTraits<__m256i> {
typedef std::int32_t ScalarRawType;
static const int kLanes = 4;
};
template <>
inline __m256i BitAnd(__m256i a, __m256i b) {
return _mm256_and_si256(a, b);
}
template <>
inline __m256i BitOr(__m256i a, __m256i b) {
return _mm256_or_si256(a, b);
}
template <>
inline __m256i BitXor(__m256i a, __m256i b) {
return _mm256_xor_si256(a, b);
}
template <>
inline __m256i BitNot(__m256i a) {
return _mm256_andnot_si256(a, _mm256_set1_epi32(-1));
}
template <>
inline __m256i Add(__m256i a, __m256i b) {
return _mm256_add_epi32(a, b);
}
template <>
inline __m256i Mul(__m256i a, __m256i b) {
return _mm256_mullo_epi32(a, b);
}
template <>
inline __m256i Sub(__m256i a, __m256i b) {
return _mm256_sub_epi32(a, b);
}
template <>
inline __m256i Neg(__m256i a) {
return _mm256_sign_epi32(a, _mm256_set1_epi32(-1));
}
template <>
inline __m256i ShiftLeft(__m256i a, int offset) {
return _mm256_slli_epi32(a, offset);
}
template <>
inline __m256i ShiftRight(__m256i a, int offset) {
return _mm256_srai_epi32(a, offset);
}
template <>
inline __m256i SelectUsingMask(__m256i if_mask, __m256i then_val,
__m256i else_val) {
return _mm256_castps_si256(_mm256_blendv_ps(_mm256_castsi256_ps(else_val),
_mm256_castsi256_ps(then_val),
_mm256_castsi256_ps(if_mask)));
}
template <>
inline __m256i MaskIfEqual(__m256i a, __m256i b) {
return _mm256_cmpeq_epi32(a, b);
}
template <>
inline __m256i MaskIfNotEqual(__m256i a, __m256i b) {
return BitNot(MaskIfEqual(a, b));
}
template <>
inline __m256i MaskIfZero(__m256i a) {
return MaskIfEqual(a, _mm256_set1_epi32(0));
}
template <>
inline __m256i MaskIfNonZero(__m256i a) {
return MaskIfNotEqual(a, _mm256_set1_epi32(0));
}
template <>
inline __m256i MaskIfGreaterThan(__m256i a, __m256i b) {
return _mm256_cmpgt_epi32(a, b);
}
template <>
inline __m256i MaskIfLessThan(__m256i a, __m256i b) {
return _mm256_cmpgt_epi32(b, a);
}
template <>
inline __m256i MaskIfGreaterThanOrEqual(__m256i a, __m256i b) {
return BitNot(MaskIfLessThan(a, b));
}
template <>
inline __m256i MaskIfLessThanOrEqual(__m256i a, __m256i b) {
return BitNot(MaskIfGreaterThan(a, b));
}
/* Assumptions:
- All and Any are used on masks.
- masks are all_ones for true lanes, all_zeroes otherwise.
Hence, All means all 128bits set, and Any means any bit set.
*/
template <>
inline bool All(__m256i a) {
return _mm256_testc_si256(a, a);
}
template <>
inline bool Any(__m256i a) {
return BitNot(_mm256_testz_si256(a, a));
}
template <>
inline __m256i RoundingHalfSum(__m256i a, __m256i b) {
/* __m256i round_bit_mask, a_over_2, b_over_2, round_bit, sum; */
/* We divide the inputs before the add to avoid the overflow and costly test
*/
/* of checking if an overflow occured on signed add */
/* round_bit_mask = _mm_set1_epi32(1); */
/* a_over_2 = _mm_srai_epi32(a, 1); */
/* b_over_2 = _mm_srai_epi32(b, 1); */
/* sum = Add(a_over_2, b_over_2); */
/* round_bit = _mm_sign_epi32(BitAnd(BitOr(a,b), round_bit_mask), sum); */
/* return Add(sum, round_bit); */
/* Other possibility detecting overflow and xor the sign if an overflow
* happened*/
__m256i one, sign_bit_mask, sum, rounded_half_sum, overflow, result;
one = _mm256_set1_epi32(1);
sign_bit_mask = _mm256_set1_epi32(0x80000000);
sum = Add(a, b);
rounded_half_sum = _mm256_srai_epi32(Add(sum, one), 1);
overflow =
BitAnd(BitAnd(BitXor(a, rounded_half_sum), BitXor(b, rounded_half_sum)),
sign_bit_mask);
result = BitXor(rounded_half_sum, overflow);
return result;
}
template <>
inline __m256i SaturatingRoundingDoublingHighMul(__m256i a, __m256i b) {
__m256i min, saturation_mask, a0_a2, a1_a3, b0_b2, b1_b3;
__m256i a0b0_a2b2, a1b1_a3b3, a0b0_a2b2_rounded, a1b1_a3b3_rounded;
__m256i a0b0_a2b2_rounded_2x, a1b1_a3b3_rounded_2x, result;
__m256i nudge;
// saturation only happen if a == b == INT_MIN
min = _mm256_set1_epi32(std::numeric_limits<std::int32_t>::min());
saturation_mask = BitAnd(MaskIfEqual(a, b), MaskIfEqual(a, min));
// a = a0 | a1 | a2 | a3
// b = b0 | b1 | b2 | b3
a0_a2 = a;
a1_a3 = _mm256_srli_si256(a, 4);
b0_b2 = b;
b1_b3 = _mm256_srli_si256(b, 4);
a0b0_a2b2 = _mm256_mul_epi32(a0_a2, b0_b2);
a1b1_a3b3 = _mm256_mul_epi32(a1_a3, b1_b3);
// do the rounding and take into account that it will be doubled
nudge = _mm256_set1_epi64x(1 << 30);
a0b0_a2b2_rounded = _mm256_add_epi64(a0b0_a2b2, nudge);
a1b1_a3b3_rounded = _mm256_add_epi64(a1b1_a3b3, nudge);
// do the doubling
a0b0_a2b2_rounded_2x = _mm256_slli_epi64(a0b0_a2b2_rounded, 1);
a1b1_a3b3_rounded_2x = _mm256_slli_epi64(a1b1_a3b3_rounded, 1);
// get the high part of the products
result = _mm256_blend_epi16(_mm256_srli_si256(a0b0_a2b2_rounded_2x, 4),
a1b1_a3b3_rounded_2x, 0xcc);
// saturate those which overflowed
return SelectUsingMask(saturation_mask, min, result);
}
template <>
inline __m256i Dup<__m256i>(std::int32_t x) {
return _mm256_set1_epi32(x);
}
} // end namespace gemmlowp
#endif // GEMMLOWP_INTERNAL_FIXEDPOINT_AVX_H_
|