1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
// Copyright 2017 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// simd_wrappers_neon.h: NEON specialization of simd_wrappers.h
#ifndef GEMMLOWP_INTERNAL_SIMD_WRAPPERS_NEON_H_
#define GEMMLOWP_INTERNAL_SIMD_WRAPPERS_NEON_H_
#include <arm_neon.h>
namespace gemmlowp {
using Int32x4 = int32x4_t;
using Int16x4 = int16x4_t;
using Int16x8 = int16x8_t;
using Uint8x8 = uint8x8_t;
template <int ScalarCount>
struct RegisterType<std::int32_t, ScalarCount> {
using Type =
typename std::conditional<ScalarCount >= 4, Int32x4, std::int32_t>::type;
};
template <int ScalarCount>
struct RegisterType<std::int16_t, ScalarCount> {
using Type = typename std::conditional<
ScalarCount >= 8, Int16x8,
typename std::conditional<ScalarCount >= 4, Int16x4,
std::int16_t>::type>::type;
};
template <int ScalarCount>
struct RegisterType<std::uint8_t, ScalarCount> {
using Type = typename std::conditional<
ScalarCount >= 8, Uint8x8,
typename std::conditional<ScalarCount >= 4, std::uint32_t,
std::uint8_t>::type>::type;
};
inline Int32x4 LoadInt32x4(const std::int32_t* src) { return vld1q_s32(src); }
inline Int16x4 LoadInt16x4(const std::int16_t* src) { return vld1_s16(src); }
inline Int16x8 LoadInt16x8(const std::int16_t* src) { return vld1q_s16(src); }
inline void StoreInt32x4(std::int32_t* dst, Int32x4 value) {
vst1q_s32(dst, value);
}
inline void StoreInt16x4(std::int16_t* dst, Int16x4 value) {
vst1_s16(dst, value);
}
inline void StoreInt16x8(std::int16_t* dst, Int16x8 value) {
vst1q_s16(dst, value);
}
template <int Lane>
std::int32_t GetLane(Int32x4 value) {
return vgetq_lane_s32(value, Lane);
}
template <int Lane>
Int32x4 DupLane(Int32x4 value) {
switch (Lane) {
case 0:
return vdupq_lane_s32(vget_low_s32(value), 0);
case 1:
return vdupq_lane_s32(vget_low_s32(value), 1);
case 2:
return vdupq_lane_s32(vget_high_s32(value), 0);
case 3:
return vdupq_lane_s32(vget_high_s32(value), 1);
default:
static_assert(Lane >= 0 && Lane <= 3, "");
return vdupq_n_s32(0);
}
}
inline Int32x4 Mul(Int32x4 a, std::int32_t b) { return vmulq_n_s32(a, b); }
inline Int32x4 Min(Int32x4 a, Int32x4 b) { return vminq_s32(a, b); }
inline Int32x4 Max(Int32x4 a, Int32x4 b) { return vmaxq_s32(a, b); }
inline Int32x4 SaturatingRoundingDoublingHighMul(Int32x4 a, std::int32_t b) {
return vqrdmulhq_n_s32(a, b);
}
template <int Lane>
Int32x4 MulByRhsLane(Int32x4 a, Int32x4 b) {
switch (Lane) {
case 0:
return vmulq_lane_s32(a, vget_low_s32(b), 0);
case 1:
return vmulq_lane_s32(a, vget_low_s32(b), 1);
case 2:
return vmulq_lane_s32(a, vget_high_s32(b), 0);
case 3:
return vmulq_lane_s32(a, vget_high_s32(b), 1);
default:
static_assert(Lane >= 0 && Lane <= 3, "");
return vdupq_n_s32(0);
}
}
inline void MulAdd(Int32x4 lhs, Int32x4 rhs, Int32x4* acc) {
*acc = vmlaq_s32(*acc, lhs, rhs);
}
inline void MulAdd(Int32x4 lhs, std::int32_t rhs, Int32x4* acc) {
*acc = vmlaq_n_s32(*acc, lhs, rhs);
}
template <int Lane>
inline void MulAddByRhsLane(Int32x4 lhs, Int32x4 rhs, Int32x4* acc) {
switch (Lane) {
case 0:
*acc = vmlaq_lane_s32(*acc, lhs, vget_low_s32(rhs), 0);
break;
case 1:
*acc = vmlaq_lane_s32(*acc, lhs, vget_low_s32(rhs), 1);
break;
case 2:
*acc = vmlaq_lane_s32(*acc, lhs, vget_high_s32(rhs), 0);
break;
case 3:
*acc = vmlaq_lane_s32(*acc, lhs, vget_high_s32(rhs), 1);
break;
default:
static_assert(Lane >= 0 && Lane <= 3, "");
}
}
template <>
struct LoadContiguousImpl<RegBlockInt16<8, 8>> {
static RegBlockInt16<8, 8> Run(const std::int16_t* src) {
RegBlockInt16<8, 8> result;
for (int i = 0; i < 8; i++) {
result.buf.reg[i] = vld1q_s16(src + 8 * i);
}
return result;
}
};
template <>
struct LoadContiguousImpl<RegBlockUint8<8, 8>> {
static RegBlockUint8<8, 8> Run(const std::uint8_t* src) {
RegBlockUint8<8, 8> result;
for (int i = 0; i < 8; i++) {
result.buf.reg[i] = vld1_u8(src + 8 * i);
}
return result;
}
};
template <>
struct LoadContiguousImpl<RegBlockInt32<8, 8>> {
static RegBlockInt32<8, 8> Run(const std::int32_t* src) {
RegBlockInt32<8, 8> result;
for (int i = 0; i < 16; i++) {
result.buf.reg[i] = vld1q_s32(src + 4 * i);
}
return result;
}
};
} // end namespace gemmlowp
#include "simd_wrappers_common_neon_sse.h"
#endif // GEMMLOWP_INTERNAL_SIMD_WRAPPERS_NEON_H_
|