1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
|
// Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// fixedpoint.h: fixed-point arithmetic, with basic operations and
// a few math functions such as tanh.
#ifndef GEMMLOWP_INTERNAL_FIXEDPOINT_H_
#define GEMMLOWP_INTERNAL_FIXEDPOINT_H_
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <limits>
#include "../internal/detect_platform.h"
namespace gemmlowp {
// Part 1: Low-level integer-arithmetic primitives.
// The implementations here are generic implementations valid for
// scalar types (e.g. std::int32_t). Architecture-specific SIMD types
// (e.g. NEON int32x4_t) may be supported by providing
// specializations for them in separate files.
//
// The purpose of these primitives is two-fold:
// - They will be used to implement higher-level fixed-point
// abstractions, namely the FixedPoint class and its arithmetic
// operators.
// - They will be directly used to implement some more involved
// fixed-point computations, e.g. the fixed-point implementation
// of math functions such as tanh.
// Some compile-time traits around raw types to handle SIMD aspects:
// number of lanes, underlying scalar type.
template <typename tIntegerType>
struct FixedPointRawTypeTraits {};
template <>
struct FixedPointRawTypeTraits<std::int32_t> {
typedef std::int32_t ScalarRawType;
static constexpr int kLanes = 1;
};
template <>
struct FixedPointRawTypeTraits<std::int16_t> {
typedef std::int16_t ScalarRawType;
static constexpr int kLanes = 1;
};
// Returns a SIMD value duplicating a scalar value across all lanes.
template <typename tRawType>
tRawType Dup(typename FixedPointRawTypeTraits<tRawType>::ScalarRawType x) {
return x;
}
// Plain bit-wise AND
template <typename tIntegerType>
tIntegerType BitAnd(tIntegerType a, tIntegerType b) {
return a & b;
}
// Plain bit-wise OR
template <typename tIntegerType>
tIntegerType BitOr(tIntegerType a, tIntegerType b) {
return a | b;
}
// Plain bit-wise XOR
template <typename tIntegerType>
tIntegerType BitXor(tIntegerType a, tIntegerType b) {
return a ^ b;
}
// Plain bit-wise NOT
template <typename tIntegerType>
tIntegerType BitNot(tIntegerType a) {
return ~a;
}
// Integer addition. Not saturating. Overflow is undefined behavior.
template <typename tIntegerType>
tIntegerType Add(tIntegerType a, tIntegerType b) {
return a + b;
}
// Integer multiplication. Not saturating. Overflow is undefined behavior.
template <typename tIntegerType>
tIntegerType Mul(tIntegerType a, tIntegerType b) {
return a * b;
}
// Integer subtraction. Not saturating. Overflow is undefined behavior.
template <typename tIntegerType>
tIntegerType Sub(tIntegerType a, tIntegerType b) {
return a - b;
}
// Integer unary negative. Not saturating. Overflow is undefined behavior.
template <typename tIntegerType>
tIntegerType Neg(tIntegerType a) {
return -a;
}
// Integer arithmetic left-shift, equivalent to multiplying with a power of two.
// Negative values are OK. In case of overflow, no Undefined
// Behavior, but the results are implementation-defined (in practice,
// they currently are saturated, but we make no commitment to that). The idea
// is that the caller will want to implement the overflowing cases with
// saturation with compare-and-mask, so we don't care about the results
// in the overflow case, we just want to avoid undefined behavior.
//
// tIntegerType may be int32 or any narrower signed type.
template <typename tIntegerType, typename OffsetType>
tIntegerType ShiftLeft(tIntegerType a, OffsetType offset) {
const std::int64_t wide_a = static_cast<std::int64_t>(a);
const std::int64_t wide_shifted = wide_a * (1 << offset);
const auto min = std::numeric_limits<tIntegerType>::min();
const auto max = std::numeric_limits<tIntegerType>::max();
return wide_shifted < min
? min
: wide_shifted > max ? max
: static_cast<tIntegerType>(wide_shifted);
}
// Integer arithmetic right-shift. Not rounding.
// Relying on implementation-defined, but in-practice-consistent,
// C++ compiler behavior.
template <typename tIntegerType>
tIntegerType ShiftRight(tIntegerType a, int offset) {
return a >> offset;
}
// Each bit of the result is set to the corresponding bit of either then_val or
// else_val depending on whether the corresponding bit of if_mask is set.
// Equivalent to the VBSL instruction in ARM NEON.
template <typename tIntegerType>
tIntegerType SelectUsingMask(tIntegerType if_mask, tIntegerType then_val,
tIntegerType else_val) {
return BitXor(BitAnd(if_mask, then_val), BitAnd(BitNot(if_mask), else_val));
}
// For each input scalar, the corresponding bits of the result are set if the
// input scalar is non-zero.
template <typename tIntegerType>
tIntegerType MaskIfNonZero(tIntegerType a) {
static constexpr tIntegerType zero = 0;
return a ? BitNot(zero) : zero;
}
// For each input scalar, the corresponding bits of the result are set if the
// input scalar is zero.
template <typename tIntegerType>
tIntegerType MaskIfZero(tIntegerType a) {
return MaskIfNonZero<tIntegerType>(!a);
}
// For each pair of input scalars, the corresponding bits of the result are
// set if the input scalars are equal.
template <typename tIntegerType>
tIntegerType MaskIfEqual(tIntegerType a, tIntegerType b) {
return MaskIfNonZero<tIntegerType>(a == b);
}
// For each pair of input scalars, the corresponding bits of the result are
// set if the input scalars are not equal.
template <typename tIntegerType>
tIntegerType MaskIfNotEqual(tIntegerType a, tIntegerType b) {
return MaskIfNonZero<tIntegerType>(a != b);
}
// For each pair of input scalars, the corresponding bits of the result are
// set if the input scalars a, b satisfy a > b.
template <typename tIntegerType>
tIntegerType MaskIfGreaterThan(tIntegerType a, tIntegerType b) {
return MaskIfNonZero<tIntegerType>(a > b);
}
// For each pair of input scalars, the corresponding bits of the result are
// set if the input scalars a, b satisfy a >= b.
template <typename tIntegerType>
tIntegerType MaskIfGreaterThanOrEqual(tIntegerType a, tIntegerType b) {
return MaskIfNonZero<tIntegerType>(a >= b);
}
// For each pair of input scalars, the corresponding bits of the result are
// set if the input scalars a, b satisfy a < b.
template <typename tIntegerType>
tIntegerType MaskIfLessThan(tIntegerType a, tIntegerType b) {
return MaskIfNonZero<tIntegerType>(a < b);
}
// For each pair of input scalars, the corresponding bits of the result are
// set if the input scalars a, b satisfy a <= b.
template <typename tIntegerType>
tIntegerType MaskIfLessThanOrEqual(tIntegerType a, tIntegerType b) {
return MaskIfNonZero<tIntegerType>(a <= b);
}
// Returns true if all of the input scalars are nonzero.
// This function may currently assume that each of the input scalars has either
// all or none of its bits set. Otherwise, its behavior is currently undefined.
template <typename tIntegerType>
bool All(tIntegerType a) {
return a;
}
// Returns true if any of the input scalars are nonzero.
// This function may currently assume that each of the input scalars has either
// all or none of its bits set. Otherwise, its behavior is currently undefined.
template <typename tIntegerType>
bool Any(tIntegerType a) {
return a;
}
// Returns (a+b)/2, rounded to the nearest integer.
// Equivalent to VRHADD in the ARM NEON instruction set.
template <typename IntegerType>
IntegerType RoundingHalfSum(IntegerType a, IntegerType b) {
static_assert(std::is_same<IntegerType, void>::value, "unimplemented");
(void)b;
return a;
}
template <>
inline std::int32_t RoundingHalfSum(std::int32_t a, std::int32_t b) {
std::int64_t a64 = a;
std::int64_t b64 = b;
std::int64_t sum = a64 + b64;
std::int64_t sign = sum >= 0 ? 1 : -1;
return static_cast<std::int32_t>((sum + sign) / 2);
}
template <>
inline std::int16_t RoundingHalfSum(std::int16_t a, std::int16_t b) {
std::int32_t a32 = a;
std::int32_t b32 = b;
std::int32_t sum = a32 + b32;
std::int32_t sign = sum >= 0 ? 1 : -1;
return static_cast<std::int16_t>((sum + sign) / 2);
}
template <typename IntegerType>
IntegerType SaturatingAdd(IntegerType a, IntegerType b) {
static_assert(std::is_same<IntegerType, void>::value, "unimplemented");
(void)b;
return a;
}
// So far this is only needed for int16.
template <>
inline std::int16_t SaturatingAdd(std::int16_t a, std::int16_t b) {
std::int32_t a32 = a;
std::int32_t b32 = b;
std::int32_t sum = a32 + b32;
return static_cast<std::int16_t>(
std::min(static_cast<std::int32_t>(32767),
std::max(static_cast<std::int32_t>(-32768), sum)));
}
template <>
inline std::int8_t SaturatingAdd(std::int8_t a, std::int8_t b) {
std::int16_t a16 = a;
std::int16_t b16 = b;
std::int16_t sum = a16 + b16;
return static_cast<std::int8_t>(std::min(
static_cast<int16_t>(std::numeric_limits<int8_t>::max()),
std::max(static_cast<int16_t>(std::numeric_limits<int8_t>::min()), sum)));
}
// Returns a+b, saturating if the integers are 16bit or narrower,
// otherwise just a plain addition.
template <typename IntegerType, bool Is16Bit>
struct AddSaturatingIf16BitImpl {
static IntegerType Run(IntegerType a, IntegerType b) { return Add(a, b); }
};
template <typename IntegerType>
struct AddSaturatingIf16BitImpl<IntegerType, true> {
static IntegerType Run(IntegerType a, IntegerType b) {
return SaturatingAdd(a, b);
}
};
template <typename IntegerType>
IntegerType AddSaturatingIf16Bit(IntegerType a, IntegerType b) {
using ScalarType =
typename FixedPointRawTypeTraits<IntegerType>::ScalarRawType;
return AddSaturatingIf16BitImpl<IntegerType, sizeof(ScalarType) == 2>::Run(a,
b);
}
// Returns the integer that represents the product of two fixed-point
// numbers, interpreting all integers as fixed-point values in the
// interval [-1, 1), rounding to the nearest value, and saturating
// -1 * -1 to the maximum value (since 1 is not in the half-open
// interval [-1, 1)).
//
// [The explanation below specializes to std::int32_t for example purpose.]
//
// The mapping between IntegerType and the interval [-1, 1) is unique and
// implied by IntegerType, which is assumed to be signed. For example,
// for IntegerType==std::int32_t, the mapping is
// real_value = integer_value / 2^31.
// So in this case, and leaving aside rounding and saturating, this
// function computes ((a / 2^31) * (b / 2^31)) * 2^31, which simplifies to
// (a * b) / 2^31.
//
// The 'doubling' part in the name of this function comes from the fact that
// this operation is very close to a "multiply-high" operation, keeping only
// the top half bits, except that that would be effectively computing
// (a * b) / 2^32,
// so here we are computing 2x that, since
// 1/2^31 = 2 * 1/2^32.
// The idea is to use all of the available 32 bits in the destination int32
// value.
//
// [End of the explanation specializing to int32.]
//
// This is equivalent to the VQRDMULH instruction in ARM NEON.
template <typename IntegerType>
IntegerType SaturatingRoundingDoublingHighMul(IntegerType a, IntegerType b) {
static_assert(std::is_same<IntegerType, void>::value, "unimplemented");
(void)b;
return a;
}
// This function implements the same computation as the ARMv7 NEON VQRDMULH
// instruction.
template <>
inline std::int32_t SaturatingRoundingDoublingHighMul(std::int32_t a,
std::int32_t b) {
bool overflow = a == b && a == std::numeric_limits<std::int32_t>::min();
std::int64_t a_64(a);
std::int64_t b_64(b);
std::int64_t ab_64 = a_64 * b_64;
std::int32_t nudge = ab_64 >= 0 ? (1 << 30) : (1 - (1 << 30));
std::int32_t ab_x2_high32 =
static_cast<std::int32_t>((ab_64 + nudge) / (1ll << 31));
return overflow ? std::numeric_limits<std::int32_t>::max() : ab_x2_high32;
}
template <>
inline std::int16_t SaturatingRoundingDoublingHighMul(std::int16_t a,
std::int16_t b) {
bool overflow = a == b && a == std::numeric_limits<std::int16_t>::min();
std::int32_t a_32(a);
std::int32_t b_32(b);
std::int32_t ab_32 = a_32 * b_32;
std::int16_t nudge = ab_32 >= 0 ? (1 << 14) : (1 - (1 << 14));
std::int16_t ab_x2_high16 =
static_cast<std::int16_t>((ab_32 + nudge) / (1 << 15));
return overflow ? std::numeric_limits<std::int16_t>::max() : ab_x2_high16;
}
// Correctly-rounded-to-nearest division by a power-of-two.
// Also known as a rounding arithmetic right shift.
template <typename IntegerType, typename ExponentType>
inline IntegerType RoundingDivideByPOT(IntegerType x, ExponentType exponent) {
assert(exponent >= 0);
assert(exponent <= 31);
const IntegerType mask = Dup<IntegerType>((1ll << exponent) - 1);
const IntegerType zero = Dup<IntegerType>(0);
const IntegerType one = Dup<IntegerType>(1);
const IntegerType remainder = BitAnd(x, mask);
const IntegerType threshold =
Add(ShiftRight(mask, 1), BitAnd(MaskIfLessThan(x, zero), one));
return Add(ShiftRight(x, exponent),
BitAnd(MaskIfGreaterThan(remainder, threshold), one));
}
// Returns the product of a run-time integer value by a compile-time power
// of two, with either a positive exponent (equivalent to an arithmetic
// left shift, saturating) or a negative exponent (equivalent to an arithmetic
// right shift, rounding to nearest).
template <int Exponent, typename IntegerType,
int ExponentSign = (Exponent > 0 ? 1 : Exponent < 0 ? -1 : 0)>
struct ImplSaturatingRoundingMultiplyByPOT {};
template <int Exponent, typename IntegerType>
struct ImplSaturatingRoundingMultiplyByPOT<Exponent, IntegerType, 0> {
static IntegerType eval(IntegerType x) { return x; }
};
template <int Exponent, typename IntegerType>
struct ImplSaturatingRoundingMultiplyByPOT<Exponent, IntegerType, 1> {
static IntegerType eval(IntegerType x) {
using ScalarIntegerType =
typename FixedPointRawTypeTraits<IntegerType>::ScalarRawType;
const IntegerType min =
Dup<IntegerType>(std::numeric_limits<ScalarIntegerType>::min());
const IntegerType max =
Dup<IntegerType>(std::numeric_limits<ScalarIntegerType>::max());
const int ScalarIntegerTypeBits = 8 * sizeof(ScalarIntegerType);
const std::int32_t threshold =
((1 << (ScalarIntegerTypeBits - 1 - Exponent)) - 1);
const IntegerType positive_mask =
MaskIfGreaterThan(x, Dup<IntegerType>(threshold));
const IntegerType negative_mask =
MaskIfLessThan(x, Dup<IntegerType>(-threshold));
IntegerType result = ShiftLeft(x, Exponent);
result = SelectUsingMask(positive_mask, max, result);
result = SelectUsingMask(negative_mask, min, result);
return result;
}
};
template <int Exponent, typename IntegerType>
struct ImplSaturatingRoundingMultiplyByPOT<Exponent, IntegerType, -1> {
static IntegerType eval(IntegerType x) {
return RoundingDivideByPOT<IntegerType>(x, -Exponent);
}
};
template <int Exponent, typename IntegerType>
IntegerType SaturatingRoundingMultiplyByPOT(IntegerType x) {
return ImplSaturatingRoundingMultiplyByPOT<Exponent, IntegerType>::eval(x);
}
// Part 2: the FixedPoint class.
// A FixedPoint object represents a fixed-point value stored in the underlying
// integer type tRawType, if tRawType is a plain scalar integer type.
// Alternatively, tRawType may be a SIMD type (e.g. NEON int32x4_t) in which
// case a FixedPoint object represents a corresponding SIMD vector of fixed
// point values.
//
// tIntegerBits describes the range of the fixed-point format: if
// tIntegerBits == m then the range of representable values is the half-open
// interval [-2^m; 2^m) where the open boundary on the right side means that
// 2^m is not representable (how close the maximum representable value is to
// it, depends on bit-depth of tRawType).
//
// In "Q format notation",
// https://en.wikipedia.org/wiki/Q_(number_format)
// we are describing the format
// Qm.n
// where
// m = tIntegerBits
// and
// n = NumberOfBits(tRawType) - (m + 1)
// Note that the (m + 1) in the above line is because we adopt the convention
// that we count the integer bits exclusively of the sign bit; so (m + 1) is
// the total number of integer bits inclusive of the sign bit.
//
// Accordingly, the number of integral representable values in our range
// [-2^m ; 2^m)
// is equal to 2^(m+1).
template <typename tRawType, int tIntegerBits>
class FixedPoint {
public:
typedef tRawType RawType;
typedef FixedPointRawTypeTraits<RawType> RawTypeTraits;
typedef typename RawTypeTraits::ScalarRawType ScalarRawType;
static constexpr int kTotalBits = 8 * sizeof(ScalarRawType);
static constexpr int kIntegerBits = tIntegerBits;
static constexpr int kFractionalBits = kTotalBits - 1 - kIntegerBits;
static_assert(kIntegerBits >= 0 && kIntegerBits < kTotalBits,
"bad IntegerBits");
typedef FixedPoint<ScalarRawType, kIntegerBits> ScalarFixedPointType;
static const ScalarRawType ScalarRawMin() {
return std::numeric_limits<ScalarRawType>::min();
}
static const ScalarRawType ScalarRawMax() {
return std::numeric_limits<ScalarRawType>::max();
}
static const ScalarRawType RawMin() {
return VectorFromScalar(ScalarRawMin());
}
static const ScalarRawType RawMax() {
return VectorFromScalar(ScalarRawMax());
}
static FixedPoint FromRaw(RawType x) {
FixedPoint retval;
retval.raw() = x;
return retval;
}
static FixedPoint FromScalarRaw(ScalarRawType x) {
FixedPoint retval;
retval.raw() = Dup<RawType>(x);
return retval;
}
static FixedPoint FromScalarFixedPoint(ScalarFixedPointType x) {
return FromScalarRaw(x.raw());
}
template <int Exponent>
static FixedPoint ConstantPOT() {
static constexpr int kOffset = kFractionalBits + Exponent;
static_assert(
kOffset < 31,
"Constant not exactly representable in this fixed-point format");
return FromScalarRaw(ScalarRawType(1) << kOffset);
}
static FixedPoint Zero() { return FromScalarRaw(0); }
static FixedPoint One() {
return FromScalarRaw(
kIntegerBits == 0
? ScalarRawMax()
: (ScalarRawType(1) << (kIntegerBits == 0 ? 0 : kFractionalBits)));
}
static FixedPoint FromDouble(double x) {
const double min_bound = static_cast<double>(ScalarRawMin());
const double max_bound = static_cast<double>(ScalarRawMax());
return FromScalarRaw(static_cast<ScalarRawType>(std::min(
std::max(round(x * static_cast<double>(1ll << kFractionalBits)),
min_bound),
max_bound)));
}
RawType raw() const { return i_; }
RawType& raw() { return i_; }
private:
RawType i_;
};
// Part 3: implementation of arithmetic operators for the
// FixedPoint class, and a few related functions.
// A FixedPoint multiplication is just a
// SaturatingRoundingDoublingHighMul operation on the underlying
// raw integer values. The IntegerBits simply add up, as is obvious
// from the fact that the range is [-2^IntegerBits, 2^IntegerBits).
template <typename tRawType, int tIntegerBits_a, int tIntegerBits_b>
FixedPoint<tRawType, tIntegerBits_a + tIntegerBits_b> operator*(
FixedPoint<tRawType, tIntegerBits_a> a,
FixedPoint<tRawType, tIntegerBits_b> b) {
FixedPoint<tRawType, tIntegerBits_a + tIntegerBits_b> c;
c.raw() = SaturatingRoundingDoublingHighMul(a.raw(), b.raw());
return c;
}
// Tweaking IntegerBits gives exact multiplication by a power of two.
template <int tExponent, typename tRawType, int tIntegerBits>
FixedPoint<tRawType, tExponent + tIntegerBits> ExactMulByPot(
FixedPoint<tRawType, tIntegerBits> a) {
FixedPoint<tRawType, tExponent + tIntegerBits> c;
c.raw() = a.raw();
return c;
}
// If we want to leave IntegerBits fixed, then multiplication
// by a power of two has to be saturating/rounding, not exact anymore.
template <int tExponent, typename tRawType, int tIntegerBits>
FixedPoint<tRawType, tIntegerBits> SaturatingRoundingMultiplyByPOT(
FixedPoint<tRawType, tIntegerBits> a) {
return FixedPoint<tRawType, tIntegerBits>::FromRaw(
SaturatingRoundingMultiplyByPOT<tExponent>(a.raw()));
}
// Generic arithmetic operators.
#define MAKE_FIXEDPOINT_UNARY_FUNC(FuncName, ImplFuncName) \
template <typename tRawType, int tIntegerBits> \
FixedPoint<tRawType, tIntegerBits> FuncName( \
FixedPoint<tRawType, tIntegerBits> a) { \
return FixedPoint<tRawType, tIntegerBits>::FromRaw(ImplFuncName(a.raw())); \
}
#define MAKE_FIXEDPOINT_BINARY_FUNC(FuncName, ImplFuncName) \
template <typename tRawType, int tIntegerBits> \
FixedPoint<tRawType, tIntegerBits> FuncName( \
FixedPoint<tRawType, tIntegerBits> a, \
FixedPoint<tRawType, tIntegerBits> b) { \
return FixedPoint<tRawType, tIntegerBits>::FromRaw( \
ImplFuncName(a.raw(), b.raw())); \
}
MAKE_FIXEDPOINT_UNARY_FUNC(operator-, Neg)
MAKE_FIXEDPOINT_UNARY_FUNC(operator~, BitNot)
MAKE_FIXEDPOINT_BINARY_FUNC(operator+, Add)
MAKE_FIXEDPOINT_BINARY_FUNC(operator-, Sub)
MAKE_FIXEDPOINT_BINARY_FUNC(operator&, BitAnd)
MAKE_FIXEDPOINT_BINARY_FUNC(operator^, BitXor)
MAKE_FIXEDPOINT_BINARY_FUNC(operator|, BitOr)
MAKE_FIXEDPOINT_BINARY_FUNC(RoundingHalfSum, RoundingHalfSum)
#undef MAKE_FIXEDPOINT_UNARY_FUNC
#undef MAKE_FIXEDPOINT_BINARY_FUNC
#define MAKE_FIXEDPOINT_UNARY_FUNC_RETURNING_RAW(FuncName) \
template <typename tRawType, int tIntegerBits> \
tRawType FuncName(FixedPoint<tRawType, tIntegerBits> a) { \
return FuncName(a.raw()); \
}
#define MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(FuncName) \
template <typename tRawType, int tIntegerBits> \
tRawType FuncName(FixedPoint<tRawType, tIntegerBits> a, \
FixedPoint<tRawType, tIntegerBits> b) { \
return FuncName(a.raw(), b.raw()); \
}
MAKE_FIXEDPOINT_UNARY_FUNC_RETURNING_RAW(MaskIfZero)
MAKE_FIXEDPOINT_UNARY_FUNC_RETURNING_RAW(MaskIfNonZero)
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfEqual)
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfNotEqual)
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfGreaterThan)
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfGreaterThanOrEqual)
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfLessThan)
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfLessThanOrEqual)
#undef MAKE_FIXEDPOINT_UNARY_FUNC_RETURNING_RAW
#undef MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, tIntegerBits> SelectUsingMask(
tRawType if_mask, FixedPoint<tRawType, tIntegerBits> then_val,
FixedPoint<tRawType, tIntegerBits> else_val) {
return FixedPoint<tRawType, tIntegerBits>::FromRaw(
SelectUsingMask(if_mask, then_val.raw(), else_val.raw()));
}
template <typename tRawType, int tIntegerBits>
bool operator==(FixedPoint<tRawType, tIntegerBits> a,
FixedPoint<tRawType, tIntegerBits> b) {
return All(MaskIfEqual(a.raw(), b.raw()));
}
template <typename tRawType, int tIntegerBits>
bool operator!=(FixedPoint<tRawType, tIntegerBits> a,
FixedPoint<tRawType, tIntegerBits> b) {
return !(a == b);
}
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, tIntegerBits> SaturatingAdd(
FixedPoint<tRawType, tIntegerBits> a,
FixedPoint<tRawType, tIntegerBits> b) {
return FixedPoint<tRawType, tIntegerBits>::FromRaw(
SaturatingAdd(a.raw(), b.raw()));
}
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, tIntegerBits> AddSaturatingIf16Bit(
FixedPoint<tRawType, tIntegerBits> a,
FixedPoint<tRawType, tIntegerBits> b) {
return FixedPoint<tRawType, tIntegerBits>::FromRaw(
AddSaturatingIf16Bit(a.raw(), b.raw()));
}
// Conversion to floating-point.
template <typename tRawType, int tIntegerBits>
double ToDouble(FixedPoint<tRawType, tIntegerBits> x) {
static_assert(FixedPointRawTypeTraits<tRawType>::kLanes == 1,
"not applicable to SIMD types");
typedef FixedPoint<tRawType, tIntegerBits> F;
return x.raw() / static_cast<double>(1ll << F::kFractionalBits);
}
// Rescale changes the number of IntegerBits and updates the underlying
// raw integer value accordingly.
template <int tIntegerBitsDst, typename tRawType, int tIntegerBitsSrc>
FixedPoint<tRawType, tIntegerBitsDst> Rescale(
FixedPoint<tRawType, tIntegerBitsSrc> x) {
static constexpr int kExponent = tIntegerBitsSrc - tIntegerBitsDst;
FixedPoint<tRawType, tIntegerBitsDst> result;
result.raw() = SaturatingRoundingMultiplyByPOT<kExponent>(x.raw());
return result;
}
// CheckedFixedPointConstant allows to specify fixed-point constants
// initialized as real numbers, in a way that does not compile floating-point
// arithmetic in production code, yet still checks agreement with the
// floating-point expressions when asserts are enabled.
//
// The raw integer value provided is always a int32, encoding a 32-bit
// fixed-point value, regardless of the actual Scalar type. This allows
// writing generic code that applies just as well to the 32-bit and 16-bit
// cases. In the 16-bit case, the raw integer value is internally
// rounding-shifted by 16 bits to the right.
template <typename FixedPointType>
inline typename FixedPointType::ScalarRawType RescaleConstantInitializer(
std::int32_t int32_value) {
typedef typename FixedPointType::ScalarRawType ScalarRawType;
static constexpr int ScalarTypeBits = 8 * sizeof(ScalarRawType);
return static_cast<ScalarRawType>(
RoundingDivideByPOT<std::int32_t>(int32_value, 32 - ScalarTypeBits));
}
#ifdef GEMMLOWP_ENABLE_FIXEDPOINT_CONSTANTS_CHECKS
template <typename FixedPointType>
FixedPointType CheckedFixedPointConstant(std::int32_t raw_value,
double double_value) {
const FixedPointType result = FixedPointType::FromScalarRaw(raw_value);
assert(result == FixedPointType::FromDouble(double_value));
return result;
}
#define GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(FixedPointType, \
ScalarRawInt32Value, DoubleValue) \
(gemmlowp::CheckedFixedPointConstant<FixedPointType>( \
gemmlowp::RescaleConstantInitializer<FixedPointType>( \
ScalarRawInt32Value), \
DoubleValue))
#else
#define GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(FixedPointType, \
ScalarRawInt32Value, DoubleValue) \
(FixedPointType::FromScalarRaw( \
gemmlowp::RescaleConstantInitializer<FixedPointType>( \
ScalarRawInt32Value)))
#endif
// Implementation of exponential function.
// Returns exp(x) for x in [-1/4, 0).
template <typename tRawType>
FixedPoint<tRawType, 0> exp_on_interval_between_negative_one_quarter_and_0_excl(
FixedPoint<tRawType, 0> a) {
typedef FixedPoint<tRawType, 0> F;
const F constant_term =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F, 1895147668, std::exp(-1.0 / 8.0));
const F constant_1_over_3 =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F, 715827883, 1.0 / 3.0);
// We're evaluating a Taylor expansion around -1/8, so we do the change of
// variable: x = a + 1/8.
// In fixed-point with 0 integer bits, 1/8 is represented by 1 << 28.
F x = a + F::template ConstantPOT<-3>();
F x2 = x * x;
F x3 = x2 * x;
F x4 = x2 * x2;
F x4_over_4 = SaturatingRoundingMultiplyByPOT<-2>(x4);
F x4_over_24_plus_x3_over_6_plus_x2_over_2 =
SaturatingRoundingMultiplyByPOT<-1>(
((x4_over_4 + x3) * constant_1_over_3) + x2);
return AddSaturatingIf16Bit(
constant_term,
constant_term * (x + x4_over_24_plus_x3_over_6_plus_x2_over_2));
}
// Returns exp(x) for x < 0.
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, 0> exp_on_negative_values(
FixedPoint<tRawType, tIntegerBits> a) {
typedef FixedPoint<tRawType, tIntegerBits> InputF;
typedef FixedPoint<tRawType, 0> ResultF;
static constexpr int kFractionalBits = InputF::kFractionalBits;
static constexpr int kIntegerBits = InputF::kIntegerBits;
const InputF kOneQuarter = InputF::template ConstantPOT<-2>();
InputF mask = kOneQuarter - InputF::FromScalarRaw(1);
InputF a_mod_quarter_minus_one_quarter = (a & mask) - kOneQuarter;
ResultF result = exp_on_interval_between_negative_one_quarter_and_0_excl(
Rescale<0>(a_mod_quarter_minus_one_quarter));
tRawType remainder = (a_mod_quarter_minus_one_quarter - a).raw();
#define GEMMLOWP_EXP_BARREL_SHIFTER(Exponent, FixedPointMultiplier) \
if (kIntegerBits > Exponent) { \
const ResultF kMultiplier = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT( \
ResultF, FixedPointMultiplier, std::exp(-std::pow(2.0, Exponent))); \
static constexpr int kShiftAmount = \
kIntegerBits > Exponent ? kFractionalBits + Exponent : 0; \
result = SelectUsingMask( \
MaskIfNonZero(BitAnd(remainder, Dup<tRawType>(1 << kShiftAmount))), \
result * kMultiplier, result); \
}
// Constants below are Q0 representations of negative exp fractionals:
GEMMLOWP_EXP_BARREL_SHIFTER(-2, 1672461947); // exp(-1/4)
GEMMLOWP_EXP_BARREL_SHIFTER(-1, 1302514674); // exp(-1/2)
GEMMLOWP_EXP_BARREL_SHIFTER(+0, 790015084); // exp(-1)
GEMMLOWP_EXP_BARREL_SHIFTER(+1, 290630308); // exp(-2)
GEMMLOWP_EXP_BARREL_SHIFTER(+2, 39332535); // exp(-4)
GEMMLOWP_EXP_BARREL_SHIFTER(+3, 720401); // exp(-8)
GEMMLOWP_EXP_BARREL_SHIFTER(+4, 242); // exp(-16)
#undef GEMMLOWP_EXP_BARREL_SHIFTER
static constexpr int clampB = kIntegerBits > 5 ? 36 - kIntegerBits : 0;
if (kIntegerBits > 5) {
const InputF clamp =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(InputF, -(1 << clampB), -32.0);
result = SelectUsingMask(MaskIfLessThan(a, clamp), ResultF::Zero(), result);
}
result = SelectUsingMask(MaskIfZero(a), ResultF::One(), result);
return result;
}
// Implementation of tanh: (1 - exp(-2x)) / (1 + exp(-2x)).
// Returns (1 - x) / (1 + x) for x in (0, 1).
template <typename tRawType>
FixedPoint<tRawType, 0> one_minus_x_over_one_plus_x_for_x_in_0_1(
FixedPoint<tRawType, 0> a) {
typedef FixedPoint<tRawType, 0> F0;
typedef FixedPoint<tRawType, 2> F2;
F0 half_denominator = RoundingHalfSum(a, F0::One());
// Newton-Raphson division
// https://en.wikipedia.org/wiki/Division_algorithm#Newton.E2.80.93Raphson_division
// Refer to that page for the logic behind the 48/17 and 32/17 constants.
const F2 constant_48_over_17 =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F2, 1515870810, 48.0 / 17.0);
const F2 constant_neg_32_over_17 =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F2, -1010580540, -32.0 / 17.0);
F2 x = constant_48_over_17 + half_denominator * constant_neg_32_over_17;
for (int i = 0; i < 3; i++) {
F2 half_denominator_times_x = half_denominator * x;
F2 one_minus_half_denominator_times_x =
F2::One() - half_denominator_times_x;
x = x + Rescale<2>(x * one_minus_half_denominator_times_x);
}
return Rescale<0>(x - F2::One());
}
// Returns -tanh(x) for x < 0.
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, 0> neg_tanh_on_negative_values(
FixedPoint<tRawType, tIntegerBits> a) {
return one_minus_x_over_one_plus_x_for_x_in_0_1(
exp_on_negative_values(ExactMulByPot<1>(a)));
}
// Returns tanh(x) for any x.
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, 0> tanh(FixedPoint<tRawType, tIntegerBits> a) {
typedef FixedPoint<tRawType, tIntegerBits> InputF;
typedef FixedPoint<tRawType, 0> ResultF;
tRawType mask_if_negative = MaskIfLessThan(a, InputF::Zero());
tRawType mask_if_zero = MaskIfZero(a);
InputF n = SelectUsingMask(mask_if_negative, a, -a);
ResultF t = neg_tanh_on_negative_values(n);
return SelectUsingMask(mask_if_zero, ResultF::Zero(),
SelectUsingMask(mask_if_negative, -t, t));
}
// Implementation of logistic function.
// Returns 1 / (1 + x) for x in (0, 1).
template <typename tRawType>
FixedPoint<tRawType, 0> one_over_one_plus_x_for_x_in_0_1(
FixedPoint<tRawType, 0> a) {
typedef FixedPoint<tRawType, 0> F0;
typedef FixedPoint<tRawType, 2> F2;
F0 half_denominator = RoundingHalfSum(a, F0::One());
// Newton-Raphson division
// https://en.wikipedia.org/wiki/Division_algorithm#Newton.E2.80.93Raphson_division
// Refer to that page for the logic behind the 48/17 and 32/17 constants.
const F2 constant_48_over_17 =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F2, 1515870810, 48.0 / 17.0);
const F2 constant_neg_32_over_17 =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F2, -1010580540, -32.0 / 17.0);
F2 x = constant_48_over_17 + half_denominator * constant_neg_32_over_17;
for (int i = 0; i < 3; i++) {
F2 half_denominator_times_x = half_denominator * x;
F2 one_minus_half_denominator_times_x =
F2::One() - half_denominator_times_x;
x = x + Rescale<2>(x * one_minus_half_denominator_times_x);
}
return Rescale<0>(ExactMulByPot<-1>(x));
}
// Returns logistic(x) = 1 / (1 + exp(-x)) for x > 0.
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, 0> logistic_on_positive_values(
FixedPoint<tRawType, tIntegerBits> a) {
return one_over_one_plus_x_for_x_in_0_1(exp_on_negative_values(-a));
}
// Returns logistic(x) = 1 / (1 + exp(-x)) for any x.
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, 0> logistic(FixedPoint<tRawType, tIntegerBits> a) {
typedef FixedPoint<tRawType, tIntegerBits> InputF;
typedef FixedPoint<tRawType, 0> ResultF;
tRawType mask_if_positive = MaskIfGreaterThan(a, InputF::Zero());
tRawType mask_if_zero = MaskIfZero(a);
InputF abs_input = SelectUsingMask(mask_if_positive, a, -a);
ResultF result_if_positive = logistic_on_positive_values(abs_input);
ResultF result_if_negative = ResultF::One() - result_if_positive;
const ResultF one_half =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(ResultF, 1 << 30, 0.5);
return SelectUsingMask(mask_if_zero, one_half,
SelectUsingMask(mask_if_positive, result_if_positive,
result_if_negative));
}
} // end namespace gemmlowp
#ifdef GEMMLOWP_NEON
#include "./fixedpoint_neon.h"
#elif defined(GEMMLOWP_AVX2)
#include "./fixedpoint_avx.h"
#elif defined(GEMMLOWP_SSE4)
#include "./fixedpoint_sse.h"
#elif defined(GEMMLOWP_MSA)
#include "./fixedpoint_msa.h"
#elif defined(GEMMLOWP_WASMSIMD)
#include "./fixedpoint_wasmsimd.h"
#endif
#endif // GEMMLOWP_INTERNAL_FIXEDPOINT_H_
|