1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
// Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// fixedpoint_neon.h: optimized NEON specializations of the templates
// in fixedpoint.h.
#ifndef GEMMLOWP_INTERNAL_FIXEDPOINT_NEON_H_
#define GEMMLOWP_INTERNAL_FIXEDPOINT_NEON_H_
#include <arm_neon.h>
namespace gemmlowp {
template <>
struct FixedPointRawTypeTraits<int32x4_t> {
typedef std::int32_t ScalarRawType;
static constexpr int kLanes = 4;
};
template <>
struct FixedPointRawTypeTraits<int16x8_t> {
typedef std::int16_t ScalarRawType;
static constexpr int kLanes = 8;
};
template <>
inline int32x4_t BitAnd(int32x4_t a, int32x4_t b) {
return vandq_s32(a, b);
}
template <>
inline int16x8_t BitAnd(int16x8_t a, int16x8_t b) {
return vandq_s16(a, b);
}
template <>
inline int32x4_t BitOr(int32x4_t a, int32x4_t b) {
return vorrq_s32(a, b);
}
template <>
inline int16x8_t BitOr(int16x8_t a, int16x8_t b) {
return vorrq_s16(a, b);
}
template <>
inline int32x4_t BitXor(int32x4_t a, int32x4_t b) {
return veorq_s32(a, b);
}
template <>
inline int16x8_t BitXor(int16x8_t a, int16x8_t b) {
return veorq_s16(a, b);
}
template <>
inline int32x4_t BitNot(int32x4_t a) {
return veorq_s32(a, vdupq_n_s32(-1));
}
template <>
inline int16x8_t BitNot(int16x8_t a) {
return veorq_s16(a, vdupq_n_s16(-1));
}
template <>
inline int32x4_t Add(int32x4_t a, int32x4_t b) {
return vaddq_s32(a, b);
}
template <>
inline int16x8_t Add(int16x8_t a, int16x8_t b) {
return vaddq_s16(a, b);
}
template <>
inline int32x4_t Sub(int32x4_t a, int32x4_t b) {
return vsubq_s32(a, b);
}
template <>
inline int16x8_t Sub(int16x8_t a, int16x8_t b) {
return vsubq_s16(a, b);
}
template <>
inline int32x4_t Neg(int32x4_t a) {
return vnegq_s32(a);
}
template <>
inline int16x8_t Neg(int16x8_t a) {
return vnegq_s16(a);
}
template <>
inline int32x4_t ShiftLeft(int32x4_t a, int offset) {
return vshlq_s32(a, vdupq_n_s32(offset));
}
template <>
inline int16x8_t ShiftLeft(int16x8_t a, int offset) {
return vshlq_s16(a, vdupq_n_s16(offset));
}
template <>
inline int32x4_t ShiftLeft(int32x4_t a, int32x4_t offset) {
return vshlq_s32(a, offset);
}
template <>
inline int16x8_t ShiftLeft(int16x8_t a, int16x8_t offset) {
return vshlq_s16(a, offset);
}
template <>
inline int32x4_t ShiftRight(int32x4_t a, int offset) {
return vshlq_s32(a, vdupq_n_s32(-offset));
}
template <>
inline int16x8_t ShiftRight(int16x8_t a, int offset) {
return vshlq_s16(a, vdupq_n_s16(-offset));
}
template <>
inline int32x4_t SelectUsingMask(int32x4_t if_mask, int32x4_t then_val,
int32x4_t else_val) {
return vbslq_s32(vreinterpretq_u32_s32(if_mask), then_val, else_val);
}
template <>
inline int16x8_t SelectUsingMask(int16x8_t if_mask, int16x8_t then_val,
int16x8_t else_val) {
return vbslq_s16(vreinterpretq_u16_s16(if_mask), then_val, else_val);
}
template <>
inline int32x4_t MaskIfEqual(int32x4_t a, int32x4_t b) {
return vreinterpretq_s32_u32(vceqq_s32(a, b));
}
template <>
inline int16x8_t MaskIfEqual(int16x8_t a, int16x8_t b) {
return vreinterpretq_s16_u16(vceqq_s16(a, b));
}
template <>
inline int32x4_t MaskIfNotEqual(int32x4_t a, int32x4_t b) {
return BitNot(MaskIfEqual(a, b));
}
template <>
inline int16x8_t MaskIfNotEqual(int16x8_t a, int16x8_t b) {
return BitNot(MaskIfEqual(a, b));
}
template <>
inline int32x4_t MaskIfZero(int32x4_t a) {
return MaskIfEqual(a, vdupq_n_s32(0));
}
template <>
inline int16x8_t MaskIfZero(int16x8_t a) {
return MaskIfEqual(a, vdupq_n_s16(0));
}
template <>
inline int32x4_t MaskIfNonZero(int32x4_t a) {
return vreinterpretq_s32_u32(vtstq_s32(a, a));
}
template <>
inline int16x8_t MaskIfNonZero(int16x8_t a) {
return vreinterpretq_s16_u16(vtstq_s16(a, a));
}
template <>
inline int32x4_t MaskIfGreaterThan(int32x4_t a, int32x4_t b) {
return vreinterpretq_s32_u32(vcgtq_s32(a, b));
}
template <>
inline int16x8_t MaskIfGreaterThan(int16x8_t a, int16x8_t b) {
return vreinterpretq_s16_u16(vcgtq_s16(a, b));
}
template <>
inline int32x4_t MaskIfGreaterThanOrEqual(int32x4_t a, int32x4_t b) {
return vreinterpretq_s32_u32(vcgeq_s32(a, b));
}
template <>
inline int16x8_t MaskIfGreaterThanOrEqual(int16x8_t a, int16x8_t b) {
return vreinterpretq_s16_u16(vcgeq_s16(a, b));
}
template <>
inline int32x4_t MaskIfLessThan(int32x4_t a, int32x4_t b) {
return vreinterpretq_s32_u32(vcltq_s32(a, b));
}
template <>
inline int16x8_t MaskIfLessThan(int16x8_t a, int16x8_t b) {
return vreinterpretq_s16_u16(vcltq_s16(a, b));
}
template <>
inline int32x4_t MaskIfLessThanOrEqual(int32x4_t a, int32x4_t b) {
return vreinterpretq_s32_u32(vcleq_s32(a, b));
}
template <>
inline int16x8_t MaskIfLessThanOrEqual(int16x8_t a, int16x8_t b) {
return vreinterpretq_s16_u16(vcleq_s16(a, b));
}
template <>
inline bool All(int32x4_t a) {
a = vandq_s32(a, vextq_s32(a, a, 1));
a = vandq_s32(a, vextq_s32(a, a, 2));
return vgetq_lane_s32(a, 0);
}
template <>
inline bool All(int16x8_t a) {
a = vandq_s16(a, vextq_s16(a, a, 1));
a = vandq_s16(a, vextq_s16(a, a, 2));
a = vandq_s16(a, vextq_s16(a, a, 4));
return vgetq_lane_s16(a, 0);
}
template <>
inline bool Any(int32x4_t a) {
a = vorrq_s32(a, vextq_s32(a, a, 1));
a = vorrq_s32(a, vextq_s32(a, a, 2));
return vgetq_lane_s32(a, 0);
}
template <>
inline bool Any(int16x8_t a) {
a = vorrq_s16(a, vextq_s16(a, a, 1));
a = vorrq_s16(a, vextq_s16(a, a, 2));
a = vorrq_s16(a, vextq_s16(a, a, 4));
return vgetq_lane_s16(a, 0);
}
template <>
inline int32x4_t RoundingHalfSum(int32x4_t a, int32x4_t b) {
return vrhaddq_s32(a, b);
}
template <>
inline int16x8_t RoundingHalfSum(int16x8_t a, int16x8_t b) {
return vrhaddq_s16(a, b);
}
template <>
inline int32x4_t SaturatingRoundingDoublingHighMul(int32x4_t a, int32x4_t b) {
return vqrdmulhq_s32(a, b);
}
template <>
inline int16x8_t SaturatingRoundingDoublingHighMul(int16x8_t a, int16x8_t b) {
return vqrdmulhq_s16(a, b);
}
template <>
inline int32x4_t RoundingDivideByPOT(int32x4_t x, int exponent) {
const int32x4_t shift_vec = vdupq_n_s32(-exponent);
const int32x4_t fixup = vshrq_n_s32(vandq_s32(x, shift_vec), 31);
const int32x4_t fixed_up_x = vqaddq_s32(x, fixup);
return vrshlq_s32(fixed_up_x, shift_vec);
}
template <>
inline int16x8_t RoundingDivideByPOT(int16x8_t x, int exponent) {
const int16x8_t shift_vec = vdupq_n_s16(-exponent);
const int16x8_t fixup = vshrq_n_s16(vandq_s16(x, shift_vec), 15);
const int16x8_t fixed_up_x = vqaddq_s16(x, fixup);
return vrshlq_s16(fixed_up_x, shift_vec);
}
template <>
inline int32x4_t RoundingDivideByPOT(int32x4_t x, int32x4_t exponent) {
const int32x4_t shift_vec = vnegq_s32(exponent);
const int32x4_t fixup = vshrq_n_s32(vandq_s32(x, shift_vec), 31);
const int32x4_t fixed_up_x = vqaddq_s32(x, fixup);
return vrshlq_s32(fixed_up_x, shift_vec);
}
template <>
inline int16x8_t RoundingDivideByPOT(int16x8_t x, int16x8_t exponent) {
const int16x8_t shift_vec = vnegq_s16(exponent);
const int16x8_t fixup = vshrq_n_s16(vandq_s16(x, shift_vec), 15);
const int16x8_t fixed_up_x = vqaddq_s16(x, fixup);
return vrshlq_s16(fixed_up_x, shift_vec);
}
template <int Exponent>
struct ImplSaturatingRoundingMultiplyByPOT<Exponent, int32x4_t, 1> {
static int32x4_t eval(int32x4_t x) { return vqshlq_n_s32(x, Exponent); }
};
template <int Exponent>
struct ImplSaturatingRoundingMultiplyByPOT<Exponent, int32x4_t, -1> {
static int32x4_t eval(int32x4_t x) {
const int32x4_t fixup = vshrq_n_s32(x, 31);
const int32x4_t fixed_up_x = vqaddq_s32(x, fixup);
return vrshrq_n_s32(fixed_up_x, -Exponent);
}
};
template <int Exponent>
struct ImplSaturatingRoundingMultiplyByPOT<Exponent, int16x8_t, 1> {
static int16x8_t eval(int16x8_t x) { return vqshlq_n_s16(x, Exponent); }
};
template <int Exponent>
struct ImplSaturatingRoundingMultiplyByPOT<Exponent, int16x8_t, -1> {
static int16x8_t eval(int16x8_t x) {
const int16x8_t fixup = vshrq_n_s16(x, 15);
const int16x8_t fixed_up_x = vqaddq_s16(x, fixup);
return vrshrq_n_s16(fixed_up_x, -Exponent);
}
};
template <>
inline int32x4_t Dup<int32x4_t>(std::int32_t x) {
return vdupq_n_s32(x);
}
template <>
inline int16x8_t Dup<int16x8_t>(std::int16_t x) {
return vdupq_n_s16(x);
}
// So far this is only needed for int16.
template <>
inline int16x8_t SaturatingAdd(int16x8_t a, int16x8_t b) {
return vqaddq_s16(a, b);
}
} // end namespace gemmlowp
#endif // GEMMLOWP_INTERNAL_FIXEDPOINT_NEON_H_
|