1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
// Copyright 2015 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// fixedpoint_SSE.h: optimized SSE specializations of the templates
// in fixedpoint.h.
#ifndef GEMMLOWP_INTERNAL_FIXEDPOINT_SSE_H_
#define GEMMLOWP_INTERNAL_FIXEDPOINT_SSE_H_
#include <smmintrin.h>
#include "fixedpoint.h"
namespace gemmlowp {
// SSE intrinsics are not finely typed: there is a single __m128i vector
// type that does not distinguish between "int32x4" and "int16x8" use
// cases, unlike the NEON equivalents. Because we had initially focused
// on int32x4, we did not pay attention and specialized these fixedpoint
// templates directly for __m128i hardcoding the int32x4 semantics,
// not leaving room for int16x8 semantics. Amending that by adding a separate
// data type, int16x8_m128i, that wraps __m128i while being a separate
// type.
struct int16x8_m128i {
__m128i v;
};
// Keep int16x8_m128i trivially constructible/destructible and provide
// easily optimized helper function.
inline int16x8_m128i to_int16x8_m128i(__m128i w) {
int16x8_m128i r;
r.v = w;
return r;
}
template <>
struct FixedPointRawTypeTraits<__m128i> {
typedef std::int32_t ScalarRawType;
static constexpr int kLanes = 4;
};
template <>
struct FixedPointRawTypeTraits<int16x8_m128i> {
typedef std::int16_t ScalarRawType;
static constexpr int kLanes = 8;
};
template <>
inline __m128i BitAnd(__m128i a, __m128i b) {
return _mm_and_si128(a, b);
}
template <>
inline int16x8_m128i BitAnd(int16x8_m128i a, int16x8_m128i b) {
return to_int16x8_m128i(_mm_and_si128(a.v, b.v));
}
template <>
inline __m128i BitOr(__m128i a, __m128i b) {
return _mm_or_si128(a, b);
}
template <>
inline int16x8_m128i BitOr(int16x8_m128i a, int16x8_m128i b) {
return to_int16x8_m128i(_mm_or_si128(a.v, b.v));
}
template <>
inline __m128i BitXor(__m128i a, __m128i b) {
return _mm_xor_si128(a, b);
}
template <>
inline int16x8_m128i BitXor(int16x8_m128i a, int16x8_m128i b) {
return to_int16x8_m128i(_mm_xor_si128(a.v, b.v));
}
template <>
inline __m128i BitNot(__m128i a) {
return _mm_andnot_si128(a, _mm_set1_epi32(-1));
}
template <>
inline int16x8_m128i BitNot(int16x8_m128i a) {
return to_int16x8_m128i(_mm_andnot_si128(a.v, _mm_set1_epi16(-1)));
}
template <>
inline __m128i Add(__m128i a, __m128i b) {
return _mm_add_epi32(a, b);
}
template <>
inline int16x8_m128i Add(int16x8_m128i a, int16x8_m128i b) {
return to_int16x8_m128i(_mm_add_epi16(a.v, b.v));
}
template <>
inline __m128i Mul(__m128i a, __m128i b) {
return _mm_mullo_epi32(a, b);
}
template <>
inline int16x8_m128i Mul(int16x8_m128i a, int16x8_m128i b) {
return to_int16x8_m128i(_mm_mullo_epi16(a.v, b.v));
}
template <>
inline __m128i Sub(__m128i a, __m128i b) {
return _mm_sub_epi32(a, b);
}
template <>
inline int16x8_m128i Sub(int16x8_m128i a, int16x8_m128i b) {
return to_int16x8_m128i(_mm_sub_epi16(a.v, b.v));
}
template <>
inline __m128i Neg(__m128i a) {
return _mm_sign_epi32(a, _mm_set1_epi32(-1));
}
template <>
inline int16x8_m128i Neg(int16x8_m128i a) {
return to_int16x8_m128i(_mm_sign_epi16(a.v, _mm_set1_epi16(-1)));
}
template <>
inline __m128i ShiftLeft(__m128i a, int offset) {
return _mm_slli_epi32(a, offset);
}
template <>
inline int16x8_m128i ShiftLeft(int16x8_m128i a, int offset) {
return to_int16x8_m128i(_mm_slli_epi16(a.v, offset));
}
template <>
inline __m128i ShiftRight(__m128i a, int offset) {
return _mm_srai_epi32(a, offset);
}
template <>
inline int16x8_m128i ShiftRight(int16x8_m128i a, int offset) {
return to_int16x8_m128i(_mm_srai_epi16(a.v, offset));
}
template <>
inline __m128i SelectUsingMask(__m128i if_mask, __m128i then_val,
__m128i else_val) {
// borrowed from Intel's arm_neon_sse.h header.
return _mm_or_si128(_mm_and_si128(if_mask, then_val),
_mm_andnot_si128(if_mask, else_val));
}
template <>
inline int16x8_m128i SelectUsingMask(int16x8_m128i if_mask,
int16x8_m128i then_val,
int16x8_m128i else_val) {
// borrowed from Intel's arm_neon_sse.h header.
return to_int16x8_m128i(SelectUsingMask(if_mask.v, then_val.v, else_val.v));
}
template <>
inline __m128i MaskIfEqual(__m128i a, __m128i b) {
return _mm_cmpeq_epi32(a, b);
}
template <>
inline int16x8_m128i MaskIfEqual(int16x8_m128i a, int16x8_m128i b) {
return to_int16x8_m128i(_mm_cmpeq_epi16(a.v, b.v));
}
template <>
inline __m128i MaskIfNotEqual(__m128i a, __m128i b) {
return BitNot(MaskIfEqual(a, b));
}
template <>
inline int16x8_m128i MaskIfNotEqual(int16x8_m128i a, int16x8_m128i b) {
return BitNot(MaskIfEqual(a, b));
}
template <>
inline __m128i MaskIfZero(__m128i a) {
return MaskIfEqual(a, _mm_set1_epi32(0));
}
template <>
inline int16x8_m128i MaskIfZero(int16x8_m128i a) {
return MaskIfEqual(a, to_int16x8_m128i(_mm_set1_epi16(0)));
}
template <>
inline __m128i MaskIfNonZero(__m128i a) {
return MaskIfNotEqual(a, _mm_set1_epi32(0));
}
template <>
inline int16x8_m128i MaskIfNonZero(int16x8_m128i a) {
return MaskIfNotEqual(a, to_int16x8_m128i(_mm_set1_epi16(0)));
}
template <>
inline __m128i MaskIfGreaterThan(__m128i a, __m128i b) {
return _mm_cmpgt_epi32(a, b);
}
template <>
inline int16x8_m128i MaskIfGreaterThan(int16x8_m128i a, int16x8_m128i b) {
return to_int16x8_m128i(_mm_cmpgt_epi16(a.v, b.v));
}
template <>
inline __m128i MaskIfLessThan(__m128i a, __m128i b) {
return _mm_cmplt_epi32(a, b);
}
template <>
inline int16x8_m128i MaskIfLessThan(int16x8_m128i a, int16x8_m128i b) {
return to_int16x8_m128i(_mm_cmplt_epi16(a.v, b.v));
}
template <>
inline __m128i MaskIfGreaterThanOrEqual(__m128i a, __m128i b) {
return BitNot(MaskIfLessThan(a, b));
}
template <>
inline int16x8_m128i MaskIfGreaterThanOrEqual(int16x8_m128i a,
int16x8_m128i b) {
return BitNot(MaskIfLessThan(a, b));
}
template <>
inline __m128i MaskIfLessThanOrEqual(__m128i a, __m128i b) {
return BitNot(MaskIfGreaterThan(a, b));
}
template <>
inline int16x8_m128i MaskIfLessThanOrEqual(int16x8_m128i a, int16x8_m128i b) {
return BitNot(MaskIfGreaterThan(a, b));
}
/* Assumptions:
- All and Any are used on masks.
- masks are all_ones for true lanes, all_zeroes otherwise.
Hence, All means all 128bits set, and Any means any bit set.
*/
template <>
inline bool All(__m128i a) {
return _mm_testc_si128(a, a);
}
template <>
inline bool All(int16x8_m128i a) {
return _mm_testc_si128(a.v, a.v);
}
template <>
inline bool Any(__m128i a) {
return !_mm_testz_si128(a, a);
}
template <>
inline bool Any(int16x8_m128i a) {
return !_mm_testz_si128(a.v, a.v);
}
template <>
inline __m128i RoundingHalfSum(__m128i a, __m128i b) {
/* __m128i round_bit_mask, a_over_2, b_over_2, round_bit, sum; */
/* We divide the inputs before the add to avoid the overflow and costly test
*/
/* of checking if an overflow occured on signed add */
/* round_bit_mask = _mm_set1_epi32(1); */
/* a_over_2 = _mm_srai_epi32(a, 1); */
/* b_over_2 = _mm_srai_epi32(b, 1); */
/* sum = Add(a_over_2, b_over_2); */
/* round_bit = _mm_sign_epi32(BitAnd(BitOr(a,b), round_bit_mask), sum); */
/* return Add(sum, round_bit); */
/* Other possibility detecting overflow and xor the sign if an overflow
* happened*/
__m128i one, sign_bit_mask, sum, rounded_half_sum, overflow, result;
one = _mm_set1_epi32(1);
sign_bit_mask = _mm_set1_epi32(0x80000000);
sum = Add(a, b);
rounded_half_sum = _mm_srai_epi32(Add(sum, one), 1);
overflow =
BitAnd(BitAnd(BitXor(a, rounded_half_sum), BitXor(b, rounded_half_sum)),
sign_bit_mask);
result = BitXor(rounded_half_sum, overflow);
return result;
}
template <>
inline int16x8_m128i RoundingHalfSum(int16x8_m128i a, int16x8_m128i b) {
// Idea: go to unsigned to use _mm_avg_epu16,
// borrowed from Intel's arm_neon_sse.h header.
__m128i constant_neg_32768 = _mm_set1_epi16(-32768);
__m128i a_unsigned = _mm_sub_epi16(a.v, constant_neg_32768);
__m128i b_unsigned = _mm_sub_epi16(b.v, constant_neg_32768);
__m128i avg_unsigned = _mm_avg_epu16(a_unsigned, b_unsigned);
__m128i avg = _mm_add_epi16(avg_unsigned, constant_neg_32768);
return to_int16x8_m128i(avg);
}
template <>
inline __m128i SaturatingRoundingDoublingHighMul(__m128i a, __m128i b) {
__m128i min, saturation_mask, a0_a2, a1_a3, b0_b2, b1_b3;
__m128i a0b0_a2b2, a1b1_a3b3, a0b0_a2b2_rounded, a1b1_a3b3_rounded;
__m128i a0b0_a2b2_rounded_2x, a1b1_a3b3_rounded_2x, result;
__m128i nudge;
// saturation only happen if a == b == INT_MIN
min = _mm_set1_epi32(std::numeric_limits<std::int32_t>::min());
saturation_mask = BitAnd(MaskIfEqual(a, b), MaskIfEqual(a, min));
// a = a0 | a1 | a2 | a3
// b = b0 | b1 | b2 | b3
a0_a2 = a;
a1_a3 = _mm_srli_si128(a, 4);
b0_b2 = b;
b1_b3 = _mm_srli_si128(b, 4);
a0b0_a2b2 = _mm_mul_epi32(a0_a2, b0_b2);
a1b1_a3b3 = _mm_mul_epi32(a1_a3, b1_b3);
// do the rounding and take into account that it will be doubled
nudge = _mm_set1_epi64x(1 << 30);
a0b0_a2b2_rounded = _mm_add_epi64(a0b0_a2b2, nudge);
a1b1_a3b3_rounded = _mm_add_epi64(a1b1_a3b3, nudge);
// do the doubling
a0b0_a2b2_rounded_2x = _mm_slli_epi64(a0b0_a2b2_rounded, 1);
a1b1_a3b3_rounded_2x = _mm_slli_epi64(a1b1_a3b3_rounded, 1);
// get the high part of the products
result = _mm_blend_epi16(_mm_srli_si128(a0b0_a2b2_rounded_2x, 4),
a1b1_a3b3_rounded_2x, 0xcc);
// saturate those which overflowed
return SelectUsingMask(saturation_mask, min, result);
}
template <>
inline int16x8_m128i SaturatingRoundingDoublingHighMul(int16x8_m128i a,
int16x8_m128i b) {
// Idea: use _mm_mulhrs_epi16 then saturate with a bit-operation,
// borrowed from Intel's arm_neon_sse.h header.
__m128i result_unsaturated = _mm_mulhrs_epi16(a.v, b.v);
__m128i saturation_mask =
_mm_cmpeq_epi16(result_unsaturated, _mm_set1_epi16(0x8000));
__m128i result = _mm_xor_si128(result_unsaturated, saturation_mask);
return to_int16x8_m128i(result);
}
template <>
inline __m128i Dup<__m128i>(std::int32_t x) {
return _mm_set1_epi32(x);
}
template <>
inline int16x8_m128i Dup<int16x8_m128i>(std::int16_t x) {
return to_int16x8_m128i(_mm_set1_epi16(x));
}
// So far this is only needed for int16.
template <>
inline int16x8_m128i SaturatingAdd(int16x8_m128i a, int16x8_m128i b) {
return to_int16x8_m128i(_mm_adds_epi16(a.v, b.v));
}
} // end namespace gemmlowp
#endif // GEMMLOWP_INTERNAL_FIXEDPOINT_SSE_H_
|