1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
// Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// kernel.h: general definitions for kernels.
#ifndef GEMMLOWP_INTERNAL_KERNEL_H_
#define GEMMLOWP_INTERNAL_KERNEL_H_
#include "../public/bit_depth.h"
#include "common.h"
namespace gemmlowp {
// Explanation of general gemmlowp terminology
// ===========================================
//
// We use the following abbreviations:
// LHS = "left-hand side"
// RHS = "right-hand side"
// Sometimes when referring to either LHS or RHS, we just say a "Side".
//
// In a matrix product of a MxK matrix times a KxN matrix,
// we call K the 'depth'. Note that M is the number of rows
// of the result (and of the LHS), and N is the number of columns
// of the result (and of the RHS).
//
// In each of the LHS and RHS matrices, we call 'width' the
// other dimension, besides the depth. So in the LHS, 'width'
// is the number of rows, while in the RHS, 'width' is the number
// of columns.
//
// So in the LHS MxK matrix, the depth is K and the width in M.
// And in the RHS KxN matrix, the depth is K and the width in N.
//
// This is illustrated in this picture:
//
// RHS width
// <----------------->
// +-----------------+ ^
// | RHS | | Depth
// +-----------------+ v
// ^ +--+ +-----------------+
// | |L | | |
// LHS width | |H | | Result |
// | |S | | |
// v +--+ +-----------------+
// <-->
// Depth
// Explanation of gemmlowp kernel formats and "cells"
// ==================================================
//
// Kernels operate on small LHS and RHS blocks that fit in registers.
// These blocks are stored contiguously in memory, but not always
// in a traditional column-major or row-major order; instead,
// they consist of a number of sub-blocks, which we call "cells",
// that are stored in column-major or row-major order. However,
// what really matters to us is not so much rows vs columns, but
// rather width vs depth. So we refer to "width-major" and "depth-major"
// storage orders. In the LHS, width-major means row-major,
// while in the RHS, width-major means column-major.
// There is also a third possibility, "diagonal order",
// which is unused at the moment.
//
// We aim to treat both sides, LHS and RHS, on an equal footing,
// so we call them both 'sides'. A KernelFormat thus is just a pair
// of KernelSideFormat's, one for LHS and one for RHS; each KernelSideFormat
// contains a CellFormat and a number of cells; cells are only ever
// stacked in the width dimension, which means stacked vertically in the
// LHS and stacked horizondally in the RHS.
//
// Example
// =======
//
// Let's work out the data layout expected by a kernel having the
// following format (the struct names here are defined below in this file):
//
// KernelFormat<
// KernelSideFormat<CellFormat<3, 4>, 3>,
// KernelSideFormat<CellFormat<5, 4>, 2>
// >
//
// The LHS format, KernelSideFormat<CellFormat<3, 4>, 3>, means:
// 3 cells, each cell having dimensions (width=3, depth=4), laid out in
// DepthMajor order (the default value, see CellFormat). In the LHS,
// DepthMajor means column-major, so the LHS cells are of size 3x4 in
// column-major order, so the LHS layout is:
//
// 0 3 6 9
// 1 4 7 10
// 2 5 8 11
// 12 15 18 21
// 13 16 19 22
// 14 17 20 23
// 24 27 30 33
// 25 28 31 34
// 26 29 32 35
//
// The RHS format, KernelSideFormat<CellFormat<5, 4>, 2>, means:
// 2 cells each having dimensions (width=5, depth=4), laid out in
// DepthMajor order (the default value, see CellFormat). In the RHS,
// DepthMajor means row-major, so the RHS cells are of size 4x5 in
// row-major order, so the RHS layout is:
//
// 0 1 2 3 4 20 21 22 23 24
// 5 6 7 8 9 25 26 27 28 29
// 10 11 12 13 14 30 31 32 33 34
// 15 16 17 18 19 35 36 37 38 39
// CellOrder enumerates the possible storage orders (=layouts) for
// a cell (see explanation above).
enum class CellOrder { DepthMajor, WidthMajor, Diagonal };
// CellFormat describes how data is laid
// out in a cell. That is, a CellOrder together with actual dimensions.
template <int tWidth, int tDepth, CellOrder tOrder = CellOrder::DepthMajor>
struct CellFormat {
static constexpr int kWidth = tWidth;
static constexpr int kDepth = tDepth;
static constexpr CellOrder kOrder = tOrder;
static constexpr int kSize = kWidth * kDepth;
};
// KernelSideFormat describes how data is laid out in a kernel side
// (i.e. LHS or RHS). That is, a CellFormat together with a number of
// cells. These cells are always stacked in the Width dimension.
// For example, in the LHS case, the Width dimension is the rows dimension,
// se we're saying that in the LHS, cells are stacked vertically.
// We never stack cells in the Depth dimension.
template <typename tCellFormat, int tCells>
struct KernelSideFormat {
typedef tCellFormat Cell;
static constexpr int kCells = tCells;
static constexpr int kWidth = kCells * Cell::kWidth;
static constexpr int kDepth = Cell::kDepth;
typedef std::uint8_t Scalar; // The scalar type of the Format.
typedef std::uint8_t InputScalar; // The scalar type of the original input.
};
// KernelSideFormat for int8 fast kernel trick. The original input is uint8, but
// packs converts it to int8.
template <typename tCellFormat, int tCells>
struct KernelSideFormatInt8 : KernelSideFormat<tCellFormat, tCells> {
typedef std::int8_t Scalar;
typedef std::uint8_t InputScalar;
};
// KernelSideFormat for int8 inputs, enabling int8 fast kernel trick without
// pack conversion.
template <typename tCellFormat, int tCells>
struct KernelSideFormatInt8Inputs : KernelSideFormat<tCellFormat, tCells> {
typedef std::int8_t Scalar;
typedef std::int8_t InputScalar;
};
// KernelFormat describes fully the input data layout that a kernel expects.
// It consists of two KernelSideFormat's, one for LHS and one for RHS.
template <typename tLhs, typename tRhs>
struct KernelFormat {
typedef tLhs Lhs;
typedef tRhs Rhs;
static_assert(Lhs::Cell::kDepth == Rhs::Cell::kDepth, "");
static constexpr int kDepth = Lhs::Cell::kDepth;
static constexpr int kRows = Lhs::Cell::kWidth * Lhs::kCells;
static constexpr int kCols = Rhs::Cell::kWidth * Rhs::kCells;
};
inline const char* CellOrderName(CellOrder o) {
switch (o) {
case CellOrder::DepthMajor:
return "DepthMajor";
case CellOrder::WidthMajor:
return "WidthMajor";
case CellOrder::Diagonal:
return "Diagonal";
default:
assert(false);
return nullptr;
}
}
// Returns the offset into a cell, at which a given coefficient is stored.
template <typename CellFormat>
inline int OffsetIntoCell(int w, int d) {
const int size = CellFormat::kWidth;
switch (CellFormat::kOrder) {
case CellOrder::DepthMajor:
return w + d * CellFormat::kWidth;
case CellOrder::WidthMajor:
return d + w * CellFormat::kDepth;
case CellOrder::Diagonal:
assert(CellFormat::kWidth == CellFormat::kDepth);
return ((size + w - d) * size + d) % (size * size);
default:
assert(false);
return 0;
}
}
// KernelBase is the virtual base class below all kernels.
// The idea is that we don't need to templatize all our code on the exact
// kernel type; we only need to templatize on kernel format. Kernels
// sharing the same format can thus share the same packing/unpacking code.
struct KernelBase {
virtual const char* Name() const = 0;
// This is the kernel implementation. We use the word 'run' consistently
// throughout gemmlowp to mean an inner loop, the implementation of which
// is to be provided by a separate optimized function.
virtual void Run(std::int32_t* dst_ptr, std::size_t dst_row_stride,
std::size_t dst_col_stride, const std::uint8_t* lhs_ptr,
const std::uint8_t* rhs_ptr, std::size_t start_depth,
std::size_t run_depth) const = 0;
virtual ~KernelBase() {}
};
template <typename InputKernelScalarType, typename KernelScalarType>
struct ZeroPointInputValue {};
template <>
struct ZeroPointInputValue<std::uint8_t, std::uint8_t> {
static constexpr std::uint8_t kValue = 0;
};
template <>
struct ZeroPointInputValue<std::uint8_t, std::int8_t> {
static constexpr std::uint8_t kValue = 128;
};
template <>
struct ZeroPointInputValue<std::int8_t, std::int8_t> {
static constexpr std::uint8_t kValue = 0;
};
} // namespace gemmlowp
#endif // GEMMLOWP_INTERNAL_KERNEL_H_
|