1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
|
// Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// output.h: processing the 32-bit accumulators output by the unpack
// stage, obtaining the final result matrix entries and storing them into
// the destination matrix.
#ifndef GEMMLOWP_INTERNAL_OUTPUT_H_
#define GEMMLOWP_INTERNAL_OUTPUT_H_
#include <cmath>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include "../fixedpoint/fixedpoint.h"
#include "../public/output_stages.h"
#include "simd_wrappers.h"
namespace gemmlowp {
template <typename OutputStage, typename InputBufferType>
struct OutputStageEvalBufferImpl {
// This generic template body should never be hit.
static_assert(
std::is_same<InputBufferType, void>::value,
"Unimplemented: missing implementation of this output pipeline stage "
"for this data type. This would happen if some architecture-specific "
"SIMD back-end (output_$arch.h) were incomplete.");
};
template <typename OutputStage, typename InputType>
struct OutputStageEvalImpl {
static constexpr int kRows = InputType::kRows;
static constexpr int kCols = InputType::kCols;
using InputBufferType = typename InputType::BufferType;
using BufferEvalImplType =
OutputStageEvalBufferImpl<OutputStage, InputBufferType>;
using OutputBufferType = typename BufferEvalImplType::OutputType;
using OutputScalarType = typename OutputBufferType::ScalarType;
using OutputType = RegisterBlock<OutputScalarType, kRows, kCols>;
OutputStageEvalImpl(const OutputStage& s) : buffer_eval_impl(s) {}
OutputType Eval(InputType input, int, int) const {
OutputType output;
output.buf = buffer_eval_impl.Eval(input.buf);
return output;
}
const BufferEvalImplType buffer_eval_impl;
};
template <int Size>
struct OutputStageEvalBufferImpl<OutputStageQuantizeDownInt32ToUint8Scale,
RegisterBuffer<std::int32_t, Size>> {
using InputType = RegisterBuffer<std::int32_t, Size>;
using OutputType = RegisterBuffer<std::int32_t, Size>;
typedef OutputStageQuantizeDownInt32ToUint8Scale OutputStage;
OutputStageEvalBufferImpl(const OutputStage& s) : output_stage(s) {}
OutputType Eval(InputType input) const {
const int result_shift = output_stage.result_shift;
const std::int32_t result_mult_int = output_stage.result_mult_int;
using RegisterType = typename InputType::RegisterType;
const RegisterType result_offset =
Dup<RegisterType>(output_stage.result_offset);
OutputType output;
for (int i = 0; i < InputType::kRegisterCount; i++) {
output.reg[i] = RoundingDivideByPOT(
Mul(Add(input.reg[i], result_offset), result_mult_int), result_shift);
}
return output;
}
const OutputStage& output_stage;
};
template <int Rows, int Cols, VectorShape Shape>
struct OutputStageEvalImpl<OutputStageQuantizeDownInt32ToUint8ScalePC<Shape>,
RegisterBlock<std::int32_t, Rows, Cols>> {
typedef RegisterBlock<std::int32_t, Rows, Cols> InputType;
typedef RegisterBlock<std::int32_t, Rows, Cols> OutputType;
typedef OutputStageQuantizeDownInt32ToUint8ScalePC<Shape> OutputStage;
OutputStageEvalImpl(const OutputStage& s) : output_stage(s) {}
OutputType Eval(InputType input, int row, int col) const {
OutputType output;
const int result_shift = output_stage.result_shift;
const int pos = Shape == VectorShape::Col ? row : col;
const auto result_mult_int =
LoadForBroadcasting<InputType>(output_stage.result_mult_int, pos);
const auto result_offset =
LoadForBroadcasting<InputType>(output_stage.result_offset, pos);
const auto dividend = BroadcastMul<InputType>(
BroadcastAdd<InputType>(input, result_offset), result_mult_int);
for (int i = 0; i < InputType::kRegisterCount; i++) {
output.buf.reg[i] =
RoundingDivideByPOT(dividend.buf.reg[i], result_shift);
}
return output;
}
const OutputStage& output_stage;
};
template <int Size>
struct OutputStageEvalBufferImpl<
OutputStageQuantizeDownInt32ByFixedPoint,
RegisterBuffer<std::int32_t, Size>> {
typedef RegisterBuffer<std::int32_t, Size> InputType;
typedef RegisterBuffer<std::int32_t, Size> OutputType;
typedef OutputStageQuantizeDownInt32ByFixedPoint OutputStage;
OutputStageEvalBufferImpl(const OutputStage& s) : output_stage(s) {}
OutputType Eval(InputType input) const {
OutputType output;
using RegisterType = typename InputType::RegisterType;
const RegisterType result_offset_after_shift =
Dup<RegisterType>(output_stage.result_offset_after_shift);
for (int i = 0; i < InputType::kRegisterCount; i++) {
const RegisterType mulhigh_val = SaturatingRoundingDoublingHighMul(
input.reg[i], output_stage.result_fixedpoint_multiplier);
output.reg[i] =
Add(RoundingDivideByPOT(mulhigh_val, output_stage.result_shift),
result_offset_after_shift);
}
return output;
}
const OutputStage& output_stage;
};
template <int Size>
struct OutputStageEvalBufferImpl<OutputStageScaleInt32ByFixedPointAndExponent,
RegisterBuffer<std::int32_t, Size>> {
typedef RegisterBuffer<std::int32_t, Size> InputType;
typedef RegisterBuffer<std::int32_t, Size> OutputType;
typedef OutputStageScaleInt32ByFixedPointAndExponent OutputStage;
OutputStageEvalBufferImpl(const OutputStage& s) : output_stage(s) {
left_shift = std::max(0, output_stage.result_exponent);
right_shift = std::max(0, -output_stage.result_exponent);
}
OutputType Eval(InputType input) const {
OutputType output;
using RegisterType = typename InputType::RegisterType;
const RegisterType result_offset_after_shift =
Dup<RegisterType>(output_stage.result_offset_after_shift);
for (int i = 0; i < InputType::kRegisterCount; i++) {
const RegisterType mulhigh_val = SaturatingRoundingDoublingHighMul(
ShiftLeft(input.reg[i], left_shift),
output_stage.result_fixedpoint_multiplier);
output.reg[i] = Add(RoundingDivideByPOT(mulhigh_val, right_shift),
result_offset_after_shift);
}
return output;
}
const OutputStage& output_stage;
int left_shift;
int right_shift;
};
template <int Rows, int Cols, VectorShape Shape>
struct OutputStageEvalImpl<
OutputStageScaleInt32ByFixedPointAndExponentPC<Shape>,
RegisterBlock<std::int32_t, Rows, Cols>> {
typedef RegisterBlock<std::int32_t, Rows, Cols> InputType;
typedef RegisterBlock<std::int32_t, Rows, Cols> OutputType;
typedef OutputStageScaleInt32ByFixedPointAndExponentPC<Shape> OutputStage;
OutputStageEvalImpl(const OutputStage& s) : output_stage(s) {}
OutputType Eval(InputType input, int row, int col) const {
OutputType output;
const int pos = Shape == VectorShape::Row ? col : row;
using RegisterType = typename InputType::RegisterType;
const RegisterType result_offset_after_shift =
Dup<RegisterType>(output_stage.result_offset_after_shift);
auto left_shift =
LoadForBroadcasting<InputType>(output_stage.result_exponent, pos);
auto right_shift =
LoadForBroadcasting<InputType>(output_stage.result_exponent, pos);
const auto result_fixedpoint_multiplier = LoadForBroadcasting<InputType>(
output_stage.result_fixedpoint_multiplier, pos);
for (int i = 0; i < decltype(left_shift)::kRegisterCount; i++) {
left_shift.buf.reg[i] = Max(left_shift.buf.reg[i], 0);
right_shift.buf.reg[i] = Max(-right_shift.buf.reg[i], 0);
}
const auto mulhigh_val = BroadcastSaturatingRoundingDoublingHighMul(
BroadcastShiftLeft(input, left_shift), result_fixedpoint_multiplier);
const auto rdpot_val =
BroadcastRoundingDivideByPOT(mulhigh_val, right_shift);
for (int i = 0; i < InputType::kRegisterCount; i++) {
output.buf.reg[i] = Add(rdpot_val.buf.reg[i], result_offset_after_shift);
}
return output;
}
const OutputStage& output_stage;
};
// Implementation of OutputStageSaturatingCastToUint8 for scalar data.
template <int Size>
struct OutputStageEvalBufferImpl<OutputStageSaturatingCastToUint8,
RegisterBuffer<std::int32_t, Size>> {
typedef RegisterBuffer<std::int32_t, Size> InputType;
typedef RegisterBuffer<std::uint8_t, Size> OutputType;
static_assert(InputType::kRegisterLanes == 1,
"This path is only for scalar values");
typedef OutputStageSaturatingCastToUint8 OutputStage;
OutputStageEvalBufferImpl(const OutputStage&) {}
OutputType Eval(InputType input) const {
OutputType output;
for (int i = 0; i < InputType::kRegisterCount; i++) {
std::int32_t data = input.reg[i];
output.reg[i] = data > 255 ? 255 : data < 0 ? 0 : data;
}
return output;
}
};
// Implementation of OutputStageSaturatingCastToInt8 for scalar data.
template <int Size>
struct OutputStageEvalBufferImpl<OutputStageSaturatingCastToInt8,
RegisterBuffer<std::int32_t, Size>> {
typedef RegisterBuffer<std::int32_t, Size> InputType;
typedef RegisterBuffer<std::int8_t, Size> OutputType;
static_assert(InputType::kRegisterLanes == 1,
"This path is only for scalar values");
typedef OutputStageSaturatingCastToInt8 OutputStage;
OutputStageEvalBufferImpl(const OutputStage&) {}
OutputType Eval(InputType input) const {
OutputType output;
for (int i = 0; i < InputType::kRegisterCount; i++) {
std::int32_t data = input.reg[i];
output.reg[i] = data > 127 ? 127 : data < -128 ? -128 : data;
}
return output;
}
};
// Implementation of OutputStageSaturatingCastToInt16 for scalar data.
template <int Size>
struct OutputStageEvalBufferImpl<OutputStageSaturatingCastToInt16,
RegisterBuffer<std::int32_t, Size>> {
typedef RegisterBuffer<std::int32_t, Size> InputType;
typedef RegisterBuffer<std::int16_t, Size> OutputType;
static_assert(InputType::kRegisterLanes == 1,
"This path is only for scalar values");
typedef OutputStageSaturatingCastToInt16 OutputStage;
OutputStageEvalBufferImpl(const OutputStage&) {}
OutputType Eval(InputType input) const {
OutputType output;
for (int i = 0; i < InputType::kRegisterCount; i++) {
std::int32_t data = input.reg[i];
output.reg[i] = data > 32767 ? 32767 : data < -32768 ? -32768 : data;
}
return output;
}
};
// Implementation of OutputStageTruncatingCastToUint8 for scalar data
template <int Size>
struct OutputStageEvalBufferImpl<OutputStageTruncatingCastToUint8,
RegisterBuffer<std::int32_t, Size>> {
typedef RegisterBuffer<std::int32_t, Size> InputType;
typedef RegisterBuffer<std::uint8_t, Size> OutputType;
static_assert(InputType::kRegisterLanes == 1,
"This path is only for scalar values");
typedef OutputStageTruncatingCastToUint8 OutputStage;
OutputStageEvalBufferImpl(const OutputStage&) {}
OutputType Eval(InputType input) const {
OutputType output;
for (int i = 0; i < InputType::kRegisterCount; i++) {
output.reg[i] = input.reg[i];
}
return output;
}
};
template <int Rows, int Cols, typename VectorType>
struct OutputStageEvalImpl<OutputStageBiasAddition<VectorType>,
RegisterBlock<std::int32_t, Rows, Cols>> {
typedef RegisterBlock<std::int32_t, Rows, Cols> InputType;
typedef RegisterBlock<std::int32_t, Rows, Cols> OutputType;
typedef OutputStageBiasAddition<VectorType> OutputStage;
OutputStageEvalImpl(const OutputStage& s) : output_stage(s) {}
OutputType Eval(InputType input, int row, int col) const {
const int pos = VectorType::kShape == VectorShape::Row ? col : row;
return BroadcastAdd<InputType>(
input, LoadForBroadcasting<InputType>(output_stage.bias_vector, pos));
}
const OutputStage& output_stage;
};
template <int Size>
struct OutputStageEvalBufferImpl<OutputStageClamp,
RegisterBuffer<std::int32_t, Size>> {
typedef RegisterBuffer<std::int32_t, Size> InputType;
typedef RegisterBuffer<std::int32_t, Size> OutputType;
typedef OutputStageClamp OutputStage;
OutputStageEvalBufferImpl(const OutputStage& s) : output_stage(s) {}
OutputType Eval(InputType input) const {
using RegisterType = typename InputType::RegisterType;
const RegisterType min = Dup<RegisterType>(output_stage.min);
const RegisterType max = Dup<RegisterType>(output_stage.max);
OutputType output;
for (int i = 0; i < InputType::kRegisterCount; i++) {
output.reg[i] = Min(Max(input.reg[i], min), max);
}
return output;
}
const OutputStage& output_stage;
};
template <int Size>
struct OutputStageEvalBufferImpl<OutputStageTanh,
RegisterBuffer<std::int32_t, Size>> {
typedef RegisterBuffer<std::int32_t, Size> InputType;
typedef RegisterBuffer<std::int32_t, Size> OutputType;
using RegisterType = typename InputType::RegisterType;
typedef RegisterType DataType;
typedef OutputStageTanh OutputStage;
OutputStageEvalBufferImpl(const OutputStage& s) : output_stage(s) {
const std::int32_t real_zero_as_int32 = output_stage.real_zero_as_int32;
const std::int32_t real_amplitude_as_int32 =
output_stage.real_amplitude_as_int32;
input_cutoff_min = real_zero_as_int32 - 8 * real_amplitude_as_int32;
input_cutoff_max = real_zero_as_int32 + 8 * real_amplitude_as_int32;
output_min = real_zero_as_int32 - real_amplitude_as_int32;
output_max = real_zero_as_int32 + real_amplitude_as_int32;
double inverse_amplitude_normalized_double = 1.0 / real_amplitude_as_int32;
inverse_amplitude_neg_exponent = 0;
while (inverse_amplitude_normalized_double < 0.5) {
inverse_amplitude_normalized_double *= 2;
inverse_amplitude_neg_exponent++;
}
inverse_amplitude_normalized = FixedPoint<DataType, 0>::FromDouble(
inverse_amplitude_normalized_double);
double amplitude_normalized_double = real_amplitude_as_int32;
amplitude_exponent = 0;
while (amplitude_normalized_double >= 1.0) {
amplitude_normalized_double *= 0.5;
amplitude_exponent++;
}
amplitude_normalized =
FixedPoint<DataType, 0>::FromDouble(amplitude_normalized_double);
}
OutputType Eval(InputType input) const {
const std::int32_t real_zero_as_int32 = output_stage.real_zero_as_int32;
typedef FixedPoint<DataType, 3> F3;
typedef FixedPoint<DataType, 0> F0;
OutputType output;
for (int i = 0; i < OutputType::kRegisterCount; i++) {
// fixed-point affine transformation
DataType input_centered =
Sub(input.reg[i], Dup<DataType>(real_zero_as_int32));
F3 fixedpoint_input =
F3::FromRaw(input_centered) * inverse_amplitude_normalized;
// left shift
fixedpoint_input.raw() = ShiftLeft(fixedpoint_input.raw(),
28 - inverse_amplitude_neg_exponent);
// fixed-point tanh and multiplication
F0 fixedpoint_output = tanh(fixedpoint_input) * amplitude_normalized;
// right shift
DataType int32_output =
Add(Dup<DataType>(real_zero_as_int32),
ShiftRight(fixedpoint_output.raw(), 31 - amplitude_exponent));
DataType mask_if_below_cutoff_min =
MaskIfLessThanOrEqual(input.reg[i], Dup<DataType>(input_cutoff_min));
DataType mask_if_above_cutoff_max = MaskIfGreaterThanOrEqual(
input.reg[i], Dup<DataType>(input_cutoff_max));
output.reg[i] = SelectUsingMask(
mask_if_below_cutoff_min, Dup<DataType>(output_min),
SelectUsingMask(mask_if_above_cutoff_max, Dup<DataType>(output_max),
int32_output));
}
return output;
}
const OutputStage& output_stage;
std::int32_t input_cutoff_min, input_cutoff_max;
std::int32_t output_min, output_max;
FixedPoint<DataType, 0> inverse_amplitude_normalized;
int inverse_amplitude_neg_exponent;
FixedPoint<DataType, 0> amplitude_normalized;
int amplitude_exponent;
};
// OutputPipelineOutputType is a helper to determine the output data type of a
// pipeline, for a
// given input data type. It is a recursive template; see the explanation on
// OutputPipelineEvalImpl below.
template <typename OutputPipelineType, int FirstStage, typename InputType,
bool StopRecursion =
FirstStage == std::tuple_size<OutputPipelineType>::value>
struct OutputPipelineOutputType {
typedef typename std::tuple_element<FirstStage, OutputPipelineType>::type
FirstStageType;
typedef typename OutputStageEvalImpl<FirstStageType, InputType>::OutputType
FirstStageOutputType;
typedef typename OutputPipelineOutputType<OutputPipelineType, FirstStage + 1,
FirstStageOutputType>::Type Type;
};
template <typename OutputPipelineType, int FirstStage, typename InputType>
struct OutputPipelineOutputType<OutputPipelineType, FirstStage, InputType,
true> {
typedef InputType Type;
};
// OutputPipelineEvalImpl is a helper to implement the evaluation of
// the whole pipeline. It is a recursive template to implement compile-time
// unrolling of the loop over all pipeline stages. The 'FirstStage' parameter
// is how we implement recursion: each specialization implements only
// evaluation starting at 'FirstStage'. The StopRecursion parameter is just a
// helper to implement the termination of the recursion as a partial
// specialization below.
template <typename OutputPipelineType, int FirstStage, typename InputType,
bool StopRecursion =
FirstStage == std::tuple_size<OutputPipelineType>::value>
struct OutputPipelineEvalImpl {
typedef typename std::tuple_element<FirstStage, OutputPipelineType>::type
FirstStageType;
typedef typename OutputStageEvalImpl<FirstStageType, InputType>::OutputType
FirstStageOutputType;
typedef typename OutputPipelineOutputType<OutputPipelineType, FirstStage,
InputType>::Type OutputType;
OutputPipelineEvalImpl(const OutputPipelineType& output_pipeline)
: head_impl(std::get<FirstStage>(output_pipeline)),
tail_impl(output_pipeline) {}
OutputType Eval(InputType input, int row, int col) const {
// Evaluate the first stage.
FirstStageOutputType first_stage_output = head_impl.Eval(input, row, col);
// Recurse into the remaining stages.
return tail_impl.Eval(first_stage_output, row, col);
}
const OutputStageEvalImpl<FirstStageType, InputType> head_impl;
const OutputPipelineEvalImpl<OutputPipelineType, FirstStage + 1,
FirstStageOutputType>
tail_impl;
};
// Specialization on 'StopRecursion' for terminating the recursion.
template <typename OutputPipelineType, int FirstStage, typename InputType>
struct OutputPipelineEvalImpl<OutputPipelineType, FirstStage, InputType, true> {
OutputPipelineEvalImpl(const OutputPipelineType&) {}
InputType Eval(InputType input, int, int) const {
// Terminating the recursion.
return input;
}
};
template <typename RegisterBlockType, typename DstType>
struct StoreFinalOutputImpl {
static_assert(std::is_same<RegisterBlockType, void>::value,
"This generic impl should never be hit");
};
template <typename ScalarType, int Rows, int Cols, typename DstType>
struct StoreFinalOutputImpl<RegisterBlock<ScalarType, Rows, Cols>, DstType> {
using RegisterBlockType = RegisterBlock<ScalarType, Rows, Cols>;
static void Run(const RegisterBlockType& src, DstType* dst, int row,
int col) {
for (int r = 0; r < Rows; r++) {
for (int c = 0; c < Cols; c++) {
*dst->data(row + r, col + c) = src.buf.reg[r + c * Rows];
}
}
}
};
// StoreFinalOutput takes the final value at the end of the output pipeline and
// stores it into the destination matrix. It can be specialized for different
// data types; the generic implementation here is typically used only for plain
// old scalar (not SIMD) types.
template <typename RegisterBlockType, typename DstType>
void StoreFinalOutput(RegisterBlockType src, DstType* dst, int row, int col) {
StoreFinalOutputImpl<RegisterBlockType, DstType>::Run(src, dst, row, col);
}
template <typename OutputPipelineType, typename InputType>
struct OutputPipelineExecutor {
OutputPipelineExecutor(const OutputPipelineType& output_pipeline)
: output_pipeline_eval_impl_(output_pipeline) {}
// Execute is the entry point into the output pipeline evaluation
// code. It should be the only thing that unpack code calls. It takes the
// result
// of the unpack stage and stores it into the destination matrix.
template <typename DstType>
void Execute(InputType input, DstType* dst, int src_global_row,
int src_global_col, int dst_row, int dst_col) const {
// Statically assert that the output pipeline matches the given destination
// matrix's scalar type.
typedef typename OutputPipelineOutputType<
OutputPipelineType, 0, InputType>::Type::BufferType::ScalarType
ScalarOutputType;
typedef typename DstType::Scalar ScalarDstType;
static_assert(std::is_same<ScalarOutputType, ScalarDstType>::value,
"mismatched destination scalar type and output pipeline");
// Evaluate the output pipeline.
auto output =
output_pipeline_eval_impl_.Eval(input, src_global_row, src_global_col);
// Store the result into the destination matrix.
StoreFinalOutput(output, dst, dst_row, dst_col);
}
const OutputPipelineEvalImpl<OutputPipelineType, 0, InputType>
output_pipeline_eval_impl_;
};
} // namespace gemmlowp
#ifdef GEMMLOWP_NEON
#include "output_neon.h"
#elif defined(GEMMLOWP_SSE4)
#include "output_sse.h"
#elif defined(GEMMLOWP_MSA)
#include "output_msa.h"
#endif
#endif // GEMMLOWP_INTERNAL_OUTPUT_H_
|