1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
// Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// pack.h: packing blocks of the LHS and RHS into the data layout
// that is expected by compute.h and eventually by kernels.
// Because this data layout depends on the kernel format, code here
// is templated in KernelLhsFormat/KernelRhsFormat.
//
// Readers note: an important theme around here is that we try hard
// to handle both Lhs and Rhs with a single piece of code. We indifferently
// refer to the Lhs and Rhs as a 'Side'. Instead of addressing matrices
// by (row, column) indices, we address them by (width, depth), as explained
// in kernel.h. This allows us to handle both Lhs and Rhs on an equal footing,
// at once.
#ifndef GEMMLOWP_INTERNAL_PACK_H_
#define GEMMLOWP_INTERNAL_PACK_H_
#include <cstring>
#include "allocator.h"
#include "block_params.h"
#include "common.h"
#include "kernel.h"
namespace gemmlowp {
// A PackedSideBlock instance is a packed block of either the LHS or RHS
// (whence the generic 'Side' name).
//
// 'Packed' means that it is laid out in the storage order that
// is expected by the specified kernel format. From a block of the input
// LHS or RHS matrix, one obtains a PackedSideBlock by calling PackLhs()
// or PackRhs().
template <typename tKernelSideFormat>
class PackedSideBlock {
public:
typedef tKernelSideFormat KernelSideFormat;
PackedSideBlock(Side side, Allocator* allocator,
const BlockParams& block_params)
: allocator_(allocator), pos_(0) {
GetSideBlockParams(side, ¶ms_, block_params);
data_handle_ =
allocator_->Reserve<std::uint8_t>(params_.l2_width * params_.l2_depth);
sums_of_each_slice_handle_ =
allocator_->Reserve<std::int32_t>(params_.l2_width);
}
~PackedSideBlock() {}
void seek_run(int start_width, int start_depth) const {
int kernel_run_depth =
std::min<int>(params_.l1_depth, params_.l2_depth - start_depth);
pos_ = params_.l2_width * start_depth + start_width * kernel_run_depth;
}
void seek_next_cell() const { pos_ += KernelSideFormat::Cell::kSize; }
void seek_forward_n_cells(int n) const {
pos_ += n * KernelSideFormat::Cell::kSize;
}
// TODO(suharshs): The datatype can now be int8 as well. We could introduce a
// new int8 current_data impl as well. This change would propagate to all pack
// impls and the Kernel::Run API, which all assume uint8. For now we leave
// this as-is pending future refactor.
const std::uint8_t* current_data() const {
return allocator_->GetPointer<std::uint8_t>(data_handle_) + pos_;
}
std::uint8_t* current_data() {
return allocator_->GetPointer<std::uint8_t>(data_handle_) + pos_;
}
std::int32_t* sums_of_each_slice() {
return allocator_->GetPointer<std::int32_t>(sums_of_each_slice_handle_);
}
const std::int32_t* sums_of_each_slice() const {
return allocator_->GetPointer<const std::int32_t>(
sums_of_each_slice_handle_);
}
const SideBlockParams& params() const { return params_; }
private:
// The block size parameters that this PackedSizeBlock follows.
// The L2 parameters determine its overall size, while the L1 parameters,
// together with the kernel format template parameter, determine
// the fine details of the storage/traversal order.
SideBlockParams params_;
// Pointer to the allocator provided by the caller. Not owned.
// The Allocator is assumed to outlive the PackedSideBlock.
Allocator* const allocator_;
// Handle on the buffer backing this packed block. Owned.
Allocator::Handle data_handle_;
// Handle on the additional buffer backing the vector of sums of slices
// associated with this block. Owned.
Allocator::Handle sums_of_each_slice_handle_;
// pos_ is the current position in the buffer, which we access
// sequentially, like a file.
// The idea is that we pack data in the same order as it is
// going to be traversed during the computation, which for
// cache-friendliness reasons is complicated to random-access,
// as the offsets calculations would be intricate. So we
// give up random-access addressing, and instead content ourselves
// with sequential access.
//
// pos_ is mutable because during the computation we will want to
// be able to iterate on the data in a const PackedSideBlock.
mutable int pos_;
};
// WidthMajor and DepthMajor are custom phrases modelled after the
// standard terminology 'row-major' and 'column-major'. Their meaning
// should be transparent once one has read the explanation in kernel.h:
// for example, in the Lhs, the 'width' dimension is the rows dimension,
// so there WidthMajor means RowMajor, while in the Rhs it is the opposite.
// Another way to put it: WidthMajor means that contiguous storage is used
// for entries having the same 'width' index.
enum class SideMapOrder { WidthMajor, DepthMajor };
// Similar to MatrixMap from map.h, but in terms of width/depth instead of
// rows/columns. Used to address blocks of the input LHS/RHS matrices when
// packing them.
template <typename tScalar, SideMapOrder tOrder>
class SideMap {
public:
typedef tScalar Scalar;
static constexpr SideMapOrder kOrder = tOrder;
SideMap(Scalar* data, int width, int depth, int stride)
: data_(data), width_(width), depth_(depth), stride_(stride) {}
SideMap(Scalar* data, int width, int depth)
: data_(data), width_(width), depth_(depth) {
stride_ = kOrder == SideMapOrder::WidthMajor ? depth_ : width_;
}
SideMap(const SideMap& other) = default;
SideMap& operator=(const SideMap& other) = default;
int width() const { return width_; }
int depth() const { return depth_; }
int stride() const { return stride_; }
int width_stride() const {
return kOrder == SideMapOrder::DepthMajor ? 1 : stride_;
}
int depth_stride() const {
return kOrder == SideMapOrder::WidthMajor ? 1 : stride_;
}
Scalar* data() const { return data_; }
Scalar* data(int w, int d) const {
return data_ + w * width_stride() + d * depth_stride();
}
Scalar operator()(int w, int d) const { return *data(w, d); }
Scalar& operator()(int w, int d) { return *data(w, d); }
SideMap block(int start_width, int start_depth, int block_width,
int block_depth) const {
assert(start_width >= 0);
assert(start_width + block_width <= width_);
assert(start_depth >= 0);
assert(start_depth + block_depth <= depth_);
return SideMap(data(start_width, start_depth), block_width, block_depth,
stride_);
}
private:
Scalar* data_; // not owned.
int width_, depth_, stride_;
};
// A PackingRegisterBlock is a small fixed-size block of a matrix being
// packed. This class is the generic non-optimized implementation,
// it is inherited by the generic implementation of PackingRegisterBlock,
// which may be overriden by template specialization. Overriding it is how
// one may provide optimized packing code paths.
//
// The packing of a block proceeds in two steps:
// 1. Ensuring that we have a complete block of source data, i.e. a block of
// the compile-time prescribed size. This is where we handle unaligned
// boundaries: if we don't have a complete block of source data, then
// we copy and zero-extend it into a local temporary (complete_src_),
// see MakeCompleteSrc. In the generic case, we do have a complete block,
// so we just use it in-place, see UseCompleteSrcInPlace.
// 2. Packing a complete block into the destination, see Pack. This is the
// most critical part, so it's convenient that unaligned boundaries have
// already been handled in step 1.
template <typename SrcMapType, typename PackedSideBlock>
class PackingRegisterBlockBase {
public:
typedef typename PackedSideBlock::KernelSideFormat KernelSideFormat;
typedef typename KernelSideFormat::Cell CellFormat;
typedef typename KernelSideFormat::InputScalar KernelInputScalar;
typedef typename KernelSideFormat::Scalar KernelScalar;
static constexpr int kCells = KernelSideFormat::kCells;
static constexpr int kCellWidth = CellFormat::kWidth;
static constexpr int kKernelWidth = CellFormat::kWidth * kCells;
static constexpr int kCellDepth = CellFormat::kDepth;
static constexpr int kCellSize = CellFormat::kSize;
static constexpr SideMapOrder kSrcOrder = SrcMapType::kOrder;
static constexpr int kZeroPointInputValue =
ZeroPointInputValue<KernelInputScalar, KernelScalar>::kValue;
PackingRegisterBlockBase() : complete_src_(nullptr, 0, 0, 0) {}
protected:
// The source data that's ready for packing. May point to
// in-place actual source data if it's already a complete block,
// (see UseCompleteSrcInPlace)
// or to the local buf_ below into which we copy incomplete blocks
// (see MakeCompleteSrc)
SrcMapType complete_src_;
// Temporary buffer for loading incomplete blocks to,
// in the source storage order
std::uint8_t buf_[kKernelWidth * kRegisterSize];
public:
// Selects a block if in-place source data that's already a complete block.
void UseCompleteSrcInPlace(const SrcMapType& src) { complete_src_ = src; }
// Copies an incomplete block of source data into a local temporary
// complete block by zero-extending it.
void MakeCompleteSrc(const SrcMapType& src) {
memset(buf_, kZeroPointInputValue, kKernelWidth * kRegisterSize);
if (kSrcOrder == SideMapOrder::WidthMajor) {
for (int w = 0; w < src.width(); w++) {
memcpy(buf_ + w * kRegisterSize, src.data(w, 0), src.depth());
}
} else {
assert(kSrcOrder == SideMapOrder::DepthMajor);
for (int d = 0; d < src.depth(); d++) {
memcpy(buf_ + d * kKernelWidth, src.data(0, d), src.width());
}
}
// Since the KernelInputScalar type may not be uint8, we need to cast buf_.
complete_src_ = SrcMapType(reinterpret_cast<KernelInputScalar*>(buf_),
kKernelWidth, kRegisterSize);
}
// Packs a complete block into the destination. This is the most
// critical part and the part that we most typically want to
// override in architecture-specific optimized specializations.
void Pack(PackedSideBlock* dst, int start_width) {
std::uint8_t* dst_ptr = dst->current_data();
for (int cell_start_depth = 0; cell_start_depth < kRegisterSize;
cell_start_depth += kCellDepth) {
for (int cell_start_width = 0; cell_start_width < kKernelWidth;
cell_start_width += kCellWidth) {
std::int32_t* cell_sums_of_each_slice_ptr =
dst->sums_of_each_slice() + start_width + cell_start_width;
const SideMap<const std::uint8_t, kSrcOrder> src_cell_map(
complete_src_.block(cell_start_width, cell_start_depth, kCellWidth,
kCellDepth));
for (int w = 0; w < kCellWidth; w++) {
std::int32_t sum = 0;
for (int d = 0; d < kCellDepth; d++) {
const std::uint8_t src_val = src_cell_map(w, d);
const std::int16_t kernel_val_unwrapped =
src_val - kZeroPointInputValue;
const std::uint8_t kernel_val_uint8 = kernel_val_unwrapped;
dst_ptr[OffsetIntoCell<CellFormat>(w, d)] = kernel_val_uint8;
sum += kernel_val_unwrapped;
}
cell_sums_of_each_slice_ptr[w] += sum;
}
dst_ptr += kCellSize;
}
}
dst->seek_forward_n_cells(kCells * kRegisterSize / kCellDepth);
}
};
template <typename SrcMapType, typename PackedSideBlock>
class PackingRegisterBlock
: public PackingRegisterBlockBase<SrcMapType, PackedSideBlock> {};
// Large-scale implementation of packing.
template <typename SrcMapType, typename PackedSideBlock>
class PackSideBlockImpl {
public:
typedef typename PackedSideBlock::KernelSideFormat KernelSideFormat;
typedef typename KernelSideFormat::Cell CellFormat;
static constexpr int kCells = KernelSideFormat::kCells;
static constexpr int kCellWidth = CellFormat::kWidth;
static constexpr int kKernelWidth = CellFormat::kWidth * kCells;
static constexpr int kCellDepth = CellFormat::kDepth;
typedef PackingRegisterBlock<SrcMapType, PackedSideBlock>
PackingRegisterBlockType;
PackSideBlockImpl(PackedSideBlock* packed_side_block,
const SrcMapType& src_map)
: packed_side_block_(packed_side_block), src_map_(src_map) {}
PackedSideBlock* packed_side_block() const { return packed_side_block_; }
const SrcMapType& src_map() const { return src_map_; }
// The public entry point to pack a block.
void PackL2() {
memset(packed_side_block_->sums_of_each_slice(), 0,
sizeof(std::int32_t) * packed_side_block_->params().l2_width);
for (int d = 0; d < src_map_.depth();
d += packed_side_block_->params().l1_depth) {
int ds = std::min<int>(packed_side_block_->params().l1_depth,
src_map_.depth() - d);
for (int w = 0; w < src_map_.width();
w += packed_side_block_->params().l1_width) {
int ws = std::min<int>(packed_side_block_->params().l1_width,
src_map_.width() - w);
PrefetchL1(w, ws, d, ds);
PackL1(w, ws, d, ds);
}
}
}
protected:
// The intermediate-level loops, between PackL2 and PackRun.
void PackL1(int start_width, int width, int start_depth, int depth) {
for (int w = 0; w < width; w += kKernelWidth) {
int ws = std::min(+kKernelWidth, width - w);
packed_side_block_->seek_run(start_width + w, start_depth);
PackRun(start_width + w, ws, start_depth, depth);
}
}
// Prefetches the data that will be read by PackL1.
void PrefetchL1(int start_width, int width, int start_depth, int depth) {
if (SrcMapType::kOrder == SideMapOrder::WidthMajor) {
for (int d = 0; d < depth; d += kDefaultCacheLineSize) {
for (int w = 0; w < width; w += 1) {
Prefetch(src_map_.data(start_width + w, start_depth + d));
}
}
} else {
for (int d = 0; d < depth; d++) {
for (int w = 0; w < width; w += kDefaultCacheLineSize) {
Prefetch(src_map_.data(start_width + w, start_depth + d));
}
}
}
}
// PackRun packs only a run i.e. is the inner loop in the depth dimension.
void PackRun(int start_width, int width, int start_depth, int depth) {
PackingRegisterBlockType b;
if (width == kKernelWidth) {
const int register_aligned_depth = RoundDown<kRegisterSize>(depth);
if (register_aligned_depth) {
for (int d = 0; d < register_aligned_depth; d += kRegisterSize) {
b.UseCompleteSrcInPlace(src_map_.block(start_width, start_depth + d,
width, kRegisterSize));
b.Pack(packed_side_block_, start_width);
}
}
if (register_aligned_depth < depth) {
b.MakeCompleteSrc(
src_map_.block(start_width, start_depth + register_aligned_depth,
width, depth - register_aligned_depth));
b.Pack(packed_side_block_, start_width);
}
} else {
assert(width < kKernelWidth);
for (int d = 0; d < depth; d += kRegisterSize) {
const int ds = std::min(+kRegisterSize, depth - d);
b.MakeCompleteSrc(
src_map_.block(start_width, start_depth + d, width, ds));
b.Pack(packed_side_block_, start_width);
}
}
}
// The PackedSideBlock being packed, i.e. the 'destination'.
PackedSideBlock* const packed_side_block_;
// A map on the block of the original matrix block being packed,
// i.e. the 'source'.
const SrcMapType& src_map_;
};
// Packs a block of the input LHS matrix, into a PackedSideBlock.
template <typename PackedSideBlock, typename MatrixMapType>
void PackLhs(PackedSideBlock* dst, const MatrixMapType& src) {
ScopedProfilingLabel label("pack LHS");
static const SideMapOrder kSideMapOrder =
MatrixMapType::kOrder == MapOrder::RowMajor ? SideMapOrder::WidthMajor
: SideMapOrder::DepthMajor;
typedef typename MatrixMapType::Scalar Scalar;
typedef SideMap<Scalar, kSideMapOrder> SideMapType;
SideMapType src_side_map(src.data(), src.rows(), src.cols(), src.stride());
typedef PackSideBlockImpl<SideMapType, PackedSideBlock> ImplType;
ImplType impl(dst, src_side_map);
impl.PackL2();
}
// Packs a block of the input RHS matrix, into a PackedSideBlock.
template <typename PackedSideBlock, typename MatrixMapType>
void PackRhs(PackedSideBlock* dst, const MatrixMapType& src) {
ScopedProfilingLabel label("pack RHS");
static const SideMapOrder kSideMapOrder =
MatrixMapType::kOrder == MapOrder::ColMajor ? SideMapOrder::WidthMajor
: SideMapOrder::DepthMajor;
typedef typename MatrixMapType::Scalar Scalar;
typedef SideMap<Scalar, kSideMapOrder> SideMapType;
SideMapType src_side_map(src.data(), src.cols(), src.rows(), src.stride());
typedef PackSideBlockImpl<SideMapType, PackedSideBlock> ImplType;
ImplType impl(dst, src_side_map);
impl.PackL2();
}
} // namespace gemmlowp
#ifdef GEMMLOWP_NEON
#include "pack_neon.h"
#elif defined(GEMMLOWP_SSE4)
#include "pack_sse.h"
#elif defined(GEMMLOWP_AVX2)
#include "pack_avx.h"
#elif defined(GEMMLOWP_MSA)
#include "pack_msa.h"
#endif
#endif // GEMMLOWP_INTERNAL_PACK_H_
|