1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
// Copyright 2018 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// pack_msa.h: optimized MSA specializations of the templates in pack.h.
#ifndef GEMMLOWP_INTERNAL_PACK_MSA_H_
#define GEMMLOWP_INTERNAL_PACK_MSA_H_
#include "pack.h"
#include <msa.h>
namespace gemmlowp {
typedef SideMap<const std::uint8_t, SideMapOrder::WidthMajor>
WidthMajorUint8SideMap;
template <int Cells>
using DepthMajorSideFormatNCells4x2 = KernelSideFormat<CellFormat<4, 2>, Cells>;
template <int Cells>
class PackingRegisterBlock<
WidthMajorUint8SideMap,
PackedSideBlock<DepthMajorSideFormatNCells4x2<Cells>>>
: public PackingRegisterBlockBase<
WidthMajorUint8SideMap,
PackedSideBlock<DepthMajorSideFormatNCells4x2<Cells>>> {
public:
typedef DepthMajorSideFormatNCells4x2<Cells> KernelSideFormat;
typedef typename KernelSideFormat::Cell CellFormat;
static constexpr int kCells = KernelSideFormat::kCells;
static const int kCellWidth = CellFormat::kWidth;
static const int kKernelWidth = CellFormat::kWidth * kCells;
static const int kCellDepth = CellFormat::kDepth;
static const int kCellSize = CellFormat::kSize;
void Pack(PackedSideBlock<KernelSideFormat>* dst, int start_width) {
std::uint8_t* dst_ptr = dst->current_data();
const std::uint8_t* const src_ptr = this->complete_src_.data();
const int stride = this->complete_src_.stride();
// Load source WidthMajor data
v16i8 src_lines[4 * kCells];
for (int i = 0; i < 4 * kCells; i++) {
src_lines[i] = __builtin_msa_ld_b(
const_cast<std::uint8_t*>(src_ptr + i * stride), 0);
}
// Reorder the data within registers to make DepthMajor 4x2 cells
v16i8 src_lines_intertwined_2x[2 * kCells][2];
for (int i = 0; i < kCells; i++) {
src_lines_intertwined_2x[2 * i][0] =
__builtin_msa_ilvr_b(src_lines[4 * i + 2], src_lines[4 * i]);
src_lines_intertwined_2x[2 * i][1] =
__builtin_msa_ilvl_b(src_lines[4 * i + 2], src_lines[4 * i]);
src_lines_intertwined_2x[2 * i + 1][0] =
__builtin_msa_ilvr_b(src_lines[4 * i + 3], src_lines[4 * i + 1]);
src_lines_intertwined_2x[2 * i + 1][1] =
__builtin_msa_ilvl_b(src_lines[4 * i + 3], src_lines[4 * i + 1]);
}
v16i8 src_lines_intertwined_4x[2 * kCells][2];
for (int i = 0; i < kCells; i++) {
src_lines_intertwined_4x[2 * i][0] =
__builtin_msa_ilvr_b(src_lines_intertwined_2x[2 * i + 1][0],
src_lines_intertwined_2x[2 * i][0]);
src_lines_intertwined_4x[2 * i][1] =
__builtin_msa_ilvl_b(src_lines_intertwined_2x[2 * i + 1][0],
src_lines_intertwined_2x[2 * i][0]);
src_lines_intertwined_4x[2 * i + 1][0] =
__builtin_msa_ilvr_b(src_lines_intertwined_2x[2 * i + 1][1],
src_lines_intertwined_2x[2 * i][1]);
src_lines_intertwined_4x[2 * i + 1][1] =
__builtin_msa_ilvl_b(src_lines_intertwined_2x[2 * i + 1][1],
src_lines_intertwined_2x[2 * i][1]);
}
// Store the resulting DepthMajor 4x2 cells in the destination packed block
for (int outer = 0; outer < 2; outer++) {
for (int inner = 0; inner < 2; inner++) {
if (kCells % 2 == 0) {
for (int cell = 0; cell < kCells; cell += 2) {
v2i64 tmp = __builtin_msa_ilvr_d(
reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * (cell + 1) + outer][inner]),
reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * cell + outer][inner]));
__builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0);
dst_ptr += 16;
}
for (int cell = 0; cell < kCells; cell += 2) {
v2i64 tmp = __builtin_msa_ilvl_d(
reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * (cell + 1) + outer][inner]),
reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * cell + outer][inner]));
__builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0);
dst_ptr += 16;
}
} else {
// Store even number of low vector halves.
for (int cell = 0; cell < kCells - 1; cell += 2) {
v2i64 tmp = __builtin_msa_ilvr_d(
reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * (cell + 1) + outer][inner]),
reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * cell + outer][inner]));
__builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0);
dst_ptr += 16;
}
// Store last low half and first high half.
v2i64 tmp = reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * 0 + outer][inner]);
tmp = __builtin_msa_insve_d(
tmp, 0,
reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * (kCells - 1) + outer][inner]));
__builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0);
dst_ptr += 16;
// Store even number of high vector halves.
for (int cell = 1; cell < kCells; cell += 2) {
v2i64 tmp = __builtin_msa_ilvl_d(
reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * (cell + 1) + outer][inner]),
reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * cell + outer][inner]));
__builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0);
dst_ptr += 16;
}
}
}
}
// Compute sums across the depth dimension
v8i16 sums_of_2_cells[kCells][4];
const v16i8 zeroes = __builtin_msa_ldi_b(0);
for (int outer = 0; outer < 2; outer++) {
for (int inner = 0; inner < 2; inner++) {
int i = 2 * outer + inner;
for (int cell = 0; cell < kCells; cell++) {
v8i16 tmp0 = reinterpret_cast<v8i16>(__builtin_msa_ilvr_b(
zeroes, src_lines_intertwined_4x[2 * cell + outer][inner]));
v8i16 tmp1 = reinterpret_cast<v8i16>(__builtin_msa_ilvl_b(
zeroes, src_lines_intertwined_4x[2 * cell + outer][inner]));
sums_of_2_cells[cell][i] = __builtin_msa_addv_h(tmp0, tmp1);
}
}
}
v4i32 sums_of_4_cells[kCells][4];
for (int i = 0; i < 4; i++) {
for (int cell = 0; cell < kCells; cell++) {
v4i32 tmp0 = reinterpret_cast<v4i32>(__builtin_msa_ilvr_h(
reinterpret_cast<v8i16>(zeroes), sums_of_2_cells[cell][i]));
v4i32 tmp1 = reinterpret_cast<v4i32>(__builtin_msa_ilvl_h(
reinterpret_cast<v8i16>(zeroes), sums_of_2_cells[cell][i]));
sums_of_4_cells[cell][i] = __builtin_msa_addv_w(tmp0, tmp1);
}
}
// Update the sums_of_each_slice vector
for (int cell = 0; cell < kCells; cell++) {
v4i32 s01 = __builtin_msa_addv_w(sums_of_4_cells[cell][0],
sums_of_4_cells[cell][1]);
v4i32 s23 = __builtin_msa_addv_w(sums_of_4_cells[cell][2],
sums_of_4_cells[cell][3]);
v4i32 s = __builtin_msa_addv_w(s01, s23);
std::int32_t* sums_of_each_slice_ptr =
dst->sums_of_each_slice() + start_width + 4 * cell;
v4i32 tmp = __builtin_msa_ld_w(sums_of_each_slice_ptr, 0);
tmp = __builtin_msa_addv_w(tmp, s);
__builtin_msa_st_w(tmp, sums_of_each_slice_ptr, 0);
}
dst->seek_forward_n_cells(kCells * kRegisterSize / kCellDepth);
}
};
template <int Cells>
using WidthMajorSideFormatNCells4x2 =
KernelSideFormat<CellFormat<4, 2, CellOrder::WidthMajor>, Cells>;
template <int Cells>
class PackingRegisterBlock<
WidthMajorUint8SideMap,
PackedSideBlock<WidthMajorSideFormatNCells4x2<Cells>>>
: public PackingRegisterBlockBase<
WidthMajorUint8SideMap,
PackedSideBlock<WidthMajorSideFormatNCells4x2<Cells>>> {
public:
typedef WidthMajorSideFormatNCells4x2<Cells> KernelSideFormat;
typedef typename KernelSideFormat::Cell CellFormat;
static constexpr int kCells = KernelSideFormat::kCells;
static const int kCellWidth = CellFormat::kWidth;
static const int kKernelWidth = CellFormat::kWidth * kCells;
static const int kCellDepth = CellFormat::kDepth;
static const int kCellSize = CellFormat::kSize;
void Pack(PackedSideBlock<KernelSideFormat>* dst, int start_width) {
std::uint8_t* dst_ptr = dst->current_data();
const std::uint8_t* src_ptr = this->complete_src_.data();
const int stride = this->complete_src_.stride();
// Load source WidthMajor data
v8i16 src_lines[kCells * 4];
for (int i = 0; i < kCells; i++) {
#define GEMMLOWP_UNROLLED_LOOP_ITER(k) \
src_lines[4 * i + k] = \
__builtin_msa_ld_h(const_cast<std::uint8_t*>(src_ptr), 0); \
src_ptr += stride;
GEMMLOWP_UNROLLED_LOOP_ITER(0)
GEMMLOWP_UNROLLED_LOOP_ITER(1)
GEMMLOWP_UNROLLED_LOOP_ITER(2)
GEMMLOWP_UNROLLED_LOOP_ITER(3)
#undef GEMMLOWP_UNROLLED_LOOP_ITER
}
// Reorder the data within registers to make WidthMajor 4x2 cells
v8i16 src_lines_intertwined_2x[2 * kCells][2];
for (int i = 0; i < kCells; i++) {
src_lines_intertwined_2x[2 * i][0] =
__builtin_msa_ilvr_h(src_lines[4 * i + 2], src_lines[4 * i]);
src_lines_intertwined_2x[2 * i][1] =
__builtin_msa_ilvl_h(src_lines[4 * i + 2], src_lines[4 * i]);
src_lines_intertwined_2x[2 * i + 1][0] =
__builtin_msa_ilvr_h(src_lines[4 * i + 3], src_lines[4 * i + 1]);
src_lines_intertwined_2x[2 * i + 1][1] =
__builtin_msa_ilvl_h(src_lines[4 * i + 3], src_lines[4 * i + 1]);
}
v8i16 src_lines_intertwined_4x[2 * kCells][2];
for (int i = 0; i < kCells; i++) {
src_lines_intertwined_4x[2 * i][0] =
__builtin_msa_ilvr_h(src_lines_intertwined_2x[2 * i + 1][0],
src_lines_intertwined_2x[2 * i][0]);
src_lines_intertwined_4x[2 * i][1] =
__builtin_msa_ilvl_h(src_lines_intertwined_2x[2 * i + 1][0],
src_lines_intertwined_2x[2 * i][0]);
src_lines_intertwined_4x[2 * i + 1][0] =
__builtin_msa_ilvr_h(src_lines_intertwined_2x[2 * i + 1][1],
src_lines_intertwined_2x[2 * i][1]);
src_lines_intertwined_4x[2 * i + 1][1] =
__builtin_msa_ilvl_h(src_lines_intertwined_2x[2 * i + 1][1],
src_lines_intertwined_2x[2 * i][1]);
}
// Store the resulting WidthMajor 4x2 cells in the destination packed block
for (int outer = 0; outer < 2; outer++) {
for (int inner = 0; inner < 2; inner++) {
if (kCells % 2 == 0) {
for (int cell = 0; cell < kCells; cell += 2) {
v2i64 tmp = __builtin_msa_ilvr_d(
reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * (cell + 1) + outer][inner]),
reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * cell + outer][inner]));
__builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0);
dst_ptr += 16;
}
for (int cell = 0; cell < kCells; cell += 2) {
v2i64 tmp = __builtin_msa_ilvl_d(
reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * (cell + 1) + outer][inner]),
reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * cell + outer][inner]));
__builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0);
dst_ptr += 16;
}
} else {
// Store even number of low vector halves.
for (int cell = 0; cell < kCells - 1; cell += 2) {
v2i64 tmp = __builtin_msa_ilvr_d(
reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * (cell + 1) + outer][inner]),
reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * cell + outer][inner]));
__builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0);
dst_ptr += 16;
}
// Store last low half and first high half.
v2i64 tmp = reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * 0 + outer][inner]);
tmp = __builtin_msa_insve_d(
tmp, 0,
reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * (kCells - 1) + outer][inner]));
__builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0);
dst_ptr += 16;
// Store even number of high vector halves.
for (int cell = 1; cell < kCells; cell += 2) {
v2i64 tmp = __builtin_msa_ilvl_d(
reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * (cell + 1) + outer][inner]),
reinterpret_cast<v2i64>(
src_lines_intertwined_4x[2 * cell + outer][inner]));
__builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0);
dst_ptr += 16;
}
}
}
}
// Compute sums across the depth dimension
v8i16 sums_of_2[kCells][4];
for (int outer = 0; outer < 2; outer++) {
for (int inner = 0; inner < 2; inner++) {
int i = 2 * outer + inner;
for (int cell = 0; cell < kCells; cell++) {
sums_of_2[cell][i] = reinterpret_cast<v8i16>(__builtin_msa_hadd_u_h(
reinterpret_cast<v16u8>(
src_lines_intertwined_4x[2 * cell + outer][inner]),
reinterpret_cast<v16u8>(
src_lines_intertwined_4x[2 * cell + outer][inner])));
}
}
}
v8i16 sums_of_4[kCells][2];
for (int i = 0; i < 2; i++) {
for (int cell = 0; cell < kCells; cell++) {
sums_of_4[cell][i] = __builtin_msa_addv_h(sums_of_2[cell][2 * i],
sums_of_2[cell][2 * i + 1]);
}
}
v8i16 sums_of_8[kCells];
for (int cell = 0; cell < kCells; cell++) {
sums_of_8[cell] =
__builtin_msa_addv_h(sums_of_4[cell][0], sums_of_4[cell][1]);
}
v4i32 sums_of_16[kCells];
const v8i16 zeroes = __builtin_msa_ldi_h(0);
for (int cell = 0; cell < kCells; cell++) {
sums_of_16[cell] = reinterpret_cast<v4i32>(
__builtin_msa_ilvr_h(zeroes, sums_of_8[cell]));
v8i16 tmp = __builtin_msa_ilvl_h(zeroes, sums_of_8[cell]);
sums_of_16[cell] =
__builtin_msa_addv_w(sums_of_16[cell], reinterpret_cast<v4i32>(tmp));
}
// Update the sums_of_each_slice vector
for (int cell = 0; cell < kCells; cell++) {
std::int32_t* sums_of_each_slice_ptr =
dst->sums_of_each_slice() + start_width + 4 * cell;
v4i32 tmp = __builtin_msa_ld_w(sums_of_each_slice_ptr, 0);
tmp = __builtin_msa_addv_w(tmp, sums_of_16[cell]);
__builtin_msa_st_w(tmp, sums_of_each_slice_ptr, 0);
}
dst->seek_forward_n_cells(kCells * kRegisterSize / kCellDepth);
}
};
template <int Width>
using Int8FastKernelFormat =
KernelSideFormatInt8<CellFormat<Width, 16, CellOrder::WidthMajor>, 1>;
template <int Width>
class PackingRegisterBlock<WidthMajorUint8SideMap,
PackedSideBlock<Int8FastKernelFormat<Width>>>
: public PackingRegisterBlockBase<
WidthMajorUint8SideMap,
PackedSideBlock<Int8FastKernelFormat<Width>>> {
public:
static_assert(Width == 2 || Width == 4, "");
typedef Int8FastKernelFormat<Width> KernelSideFormat;
typedef typename KernelSideFormat::Cell CellFormat;
static const int kCells = KernelSideFormat::kCells;
static const int kCellWidth = CellFormat::kWidth;
static const int kKernelWidth = CellFormat::kWidth * kCells;
static const int kCellDepth = CellFormat::kDepth;
static const int kCellSize = CellFormat::kSize;
void Pack(PackedSideBlock<KernelSideFormat>* dst, int start_width) {
std::int32_t* sums_ptr = dst->sums_of_each_slice() + start_width;
std::uint8_t* dst_ptr = dst->current_data();
const std::uint8_t* const src_ptr = this->complete_src_.data();
const int stride = this->complete_src_.stride();
// Load source WidthMajor data.
v16i8 src_lines[Width];
for (int i = 0; i < Width; i++) {
src_lines[i] = __builtin_msa_ld_b(
const_cast<std::uint8_t*>(src_ptr + i * stride), 0);
}
for (int i = 0; i < Width; i++) {
// Subtract 128 by inverting bit 7.
src_lines[i] = reinterpret_cast<v16i8>(
__builtin_msa_bnegi_b(reinterpret_cast<v16u8>(src_lines[i]), 7));
}
for (int i = 0; i < Width; i++) {
__builtin_msa_st_b(src_lines[i], dst_ptr + 16 * i, 0);
}
v8i16 sums2[Width];
for (int i = 0; i < Width; i++) {
sums2[i] = __builtin_msa_hadd_s_h(src_lines[i], src_lines[i]);
}
v4i32 sums4_wide[Width];
for (int i = 0; i < Width; i++) {
sums4_wide[i] = __builtin_msa_hadd_s_w(sums2[i], sums2[i]);
}
v8i16 sums4[Width / 2];
for (int i = 0; i < Width / 2; i++) {
sums4[i] = __builtin_msa_pckev_h(
reinterpret_cast<v8i16>(sums4_wide[2 * i + 1]),
reinterpret_cast<v8i16>(sums4_wide[2 * i]));
}
v4i32 sums8_wide[Width / 2];
for (int i = 0; i < Width / 2; i++) {
sums8_wide[i] = __builtin_msa_hadd_s_w(sums4[i], sums4[i]);
}
if (Width == 4) {
v4i32 sum = __builtin_msa_ld_w(const_cast<std::int32_t*>(sums_ptr), 0);
v8i16 sums8 = __builtin_msa_pckev_h(
reinterpret_cast<v8i16>(sums8_wide[1]),
reinterpret_cast<v8i16>(sums8_wide[0]));
v4i32 sums16 = __builtin_msa_hadd_s_w(sums8, sums8);
sum = __builtin_msa_addv_w(sum, sums16);
__builtin_msa_st_w(sum, sums_ptr, 0);
} else {
assert(Width == 2);
std::int32_t sum[2] = { sums_ptr[0], sums_ptr[1] };
v2i64 sums16 = __builtin_msa_hadd_s_d(sums8_wide[0], sums8_wide[0]);
sum[0] += __builtin_msa_copy_s_w(reinterpret_cast<v4i32>(sums16), 0);
sum[1] += __builtin_msa_copy_s_w(reinterpret_cast<v4i32>(sums16), 2);
sums_ptr[0] = sum[0];
sums_ptr[1] = sum[1];
}
dst->seek_forward_n_cells(1);
}
};
} // namespace gemmlowp
#endif // GEMMLOWP_INTERNAL_PACK_MSA_H_
|