1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
// Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// pack_neon.h: optimized NEON specializations of the templates in pack.h.
#ifndef GEMMLOWP_INTERNAL_PACK_NEON_H_
#define GEMMLOWP_INTERNAL_PACK_NEON_H_
#include "pack.h"
#include <arm_neon.h>
namespace gemmlowp {
typedef SideMap<const std::uint8_t, SideMapOrder::WidthMajor>
WidthMajorUint8SideMap;
typedef SideMap<const std::int8_t, SideMapOrder::WidthMajor>
WidthMajorInt8SideMap;
template <int Cells>
using DepthMajorSideFormatNCells4x2 = KernelSideFormat<CellFormat<4, 2>, Cells>;
template <int Cells>
class PackingRegisterBlock<
WidthMajorUint8SideMap,
PackedSideBlock<DepthMajorSideFormatNCells4x2<Cells>>>
: public PackingRegisterBlockBase<
WidthMajorUint8SideMap,
PackedSideBlock<DepthMajorSideFormatNCells4x2<Cells>>> {
public:
typedef DepthMajorSideFormatNCells4x2<Cells> KernelSideFormat;
typedef typename KernelSideFormat::Cell CellFormat;
static const int kCells = KernelSideFormat::kCells;
static const int kCellWidth = CellFormat::kWidth;
static const int kKernelWidth = CellFormat::kWidth * kCells;
static const int kCellDepth = CellFormat::kDepth;
static const int kCellSize = CellFormat::kSize;
void Pack(PackedSideBlock<KernelSideFormat>* dst, int start_width) {
std::uint8_t* dst_ptr = dst->current_data();
const std::uint8_t* const src_ptr = this->complete_src_.data();
const int stride = this->complete_src_.stride();
// Load source WidthMajor data
uint8x16_t src_lines[4 * kCells];
for (int i = 0; i < 4 * kCells; i++) {
src_lines[i] = vld1q_u8(src_ptr + i * stride);
}
// Reorder the data within registers to make DepthMajor 4x2 cells
uint8x16x2_t src_lines_intertwined_2x[2 * kCells];
for (int i = 0; i < kCells; i++) {
src_lines_intertwined_2x[2 * i] =
vzipq_u8(src_lines[4 * i], src_lines[4 * i + 2]);
src_lines_intertwined_2x[2 * i + 1] =
vzipq_u8(src_lines[4 * i + 1], src_lines[4 * i + 3]);
}
uint8x16x2_t src_lines_intertwined_4x[2 * kCells];
for (int i = 0; i < kCells; i++) {
src_lines_intertwined_4x[2 * i] =
vzipq_u8(src_lines_intertwined_2x[2 * i].val[0],
src_lines_intertwined_2x[2 * i + 1].val[0]);
src_lines_intertwined_4x[2 * i + 1] =
vzipq_u8(src_lines_intertwined_2x[2 * i].val[1],
src_lines_intertwined_2x[2 * i + 1].val[1]);
}
// Store the resulting DepthMajor 4x2 cells in the destination packed block
for (int outer = 0; outer < 2; outer++) {
for (int inner = 0; inner < 2; inner++) {
for (int cell = 0; cell < kCells; cell++) {
uint8x8_t value = vget_low_u8(
src_lines_intertwined_4x[2 * cell + outer].val[inner]);
vst1_u8(dst_ptr, value);
dst_ptr += 8;
}
for (int cell = 0; cell < kCells; cell++) {
uint8x8_t value = vget_high_u8(
src_lines_intertwined_4x[2 * cell + outer].val[inner]);
vst1_u8(dst_ptr, value);
dst_ptr += 8;
}
}
}
// Compute sums across the depth dimension
uint16x8_t sums_of_2_cells[kCells][4];
for (int outer = 0; outer < 2; outer++) {
for (int inner = 0; inner < 2; inner++) {
int i = 2 * outer + inner;
for (int cell = 0; cell < kCells; cell++) {
sums_of_2_cells[cell][i] = vaddl_u8(
vget_low_u8(
src_lines_intertwined_4x[2 * cell + outer].val[inner]),
vget_high_u8(
src_lines_intertwined_4x[2 * cell + outer].val[inner]));
}
}
}
int32x4_t sums_of_4_cells[kCells][4];
for (int i = 0; i < 4; i++) {
for (int cell = 0; cell < kCells; cell++) {
sums_of_4_cells[cell][i] = vreinterpretq_s32_u32(
vaddl_u16(vget_low_u16(sums_of_2_cells[cell][i]),
vget_high_u16(sums_of_2_cells[cell][i])));
}
}
// Update the sums_of_each_slice vector
for (int cell = 0; cell < kCells; cell++) {
int32x4_t s01 =
vaddq_s32(sums_of_4_cells[cell][0], sums_of_4_cells[cell][1]);
int32x4_t s23 =
vaddq_s32(sums_of_4_cells[cell][2], sums_of_4_cells[cell][3]);
int32x4_t s = vaddq_s32(s01, s23);
std::int32_t* sums_of_each_slice_ptr =
dst->sums_of_each_slice() + start_width + 4 * cell;
vst1q_s32(sums_of_each_slice_ptr,
vaddq_s32(s, vld1q_s32(sums_of_each_slice_ptr)));
}
dst->seek_forward_n_cells(kCells * kRegisterSize / kCellDepth);
}
};
template <int Cells>
using WidthMajorSideFormatNCells4x2 =
KernelSideFormat<CellFormat<4, 2, CellOrder::WidthMajor>, Cells>;
template <int Cells>
class PackingRegisterBlock<
WidthMajorUint8SideMap,
PackedSideBlock<WidthMajorSideFormatNCells4x2<Cells>>>
: public PackingRegisterBlockBase<
WidthMajorUint8SideMap,
PackedSideBlock<WidthMajorSideFormatNCells4x2<Cells>>> {
public:
typedef WidthMajorSideFormatNCells4x2<Cells> KernelSideFormat;
typedef typename KernelSideFormat::Cell CellFormat;
static const int kCells = KernelSideFormat::kCells;
static const int kCellWidth = CellFormat::kWidth;
static const int kKernelWidth = CellFormat::kWidth * kCells;
static const int kCellDepth = CellFormat::kDepth;
static const int kCellSize = CellFormat::kSize;
void Pack(PackedSideBlock<KernelSideFormat>* dst, int start_width) {
std::uint8_t* dst_ptr = dst->current_data();
const std::uint8_t* src_ptr = this->complete_src_.data();
const int stride = this->complete_src_.stride();
// Load source WidthMajor data
uint16x8_t src_lines[kCells * 4];
for (int i = 0; i < kCells; i++) {
// This packing path is used with our current
// less-than-8-bit kernel, and the partial unrolling of this loop
// results in substantially faster code (thanks to better
// register allocation) on Nexus 5.
#define GEMMLOWP_UNROLLED_LOOP_ITER(k) \
src_lines[4 * i + k] = vreinterpretq_u16_u8(vld1q_u8(src_ptr)); \
src_ptr += stride;
GEMMLOWP_UNROLLED_LOOP_ITER(0)
GEMMLOWP_UNROLLED_LOOP_ITER(1)
GEMMLOWP_UNROLLED_LOOP_ITER(2)
GEMMLOWP_UNROLLED_LOOP_ITER(3)
#undef GEMMLOWP_UNROLLED_LOOP_ITER
}
// Reorder the data within registers to make WidthMajor 4x2 cells
uint16x8x2_t src_lines_intertwined_2x[2 * kCells];
for (int i = 0; i < kCells; i++) {
src_lines_intertwined_2x[2 * i] =
vzipq_u16(src_lines[4 * i], src_lines[4 * i + 2]);
src_lines_intertwined_2x[2 * i + 1] =
vzipq_u16(src_lines[4 * i + 1], src_lines[4 * i + 3]);
}
uint16x8x2_t src_lines_intertwined_4x[2 * kCells];
for (int i = 0; i < kCells; i++) {
src_lines_intertwined_4x[2 * i] =
vzipq_u16(src_lines_intertwined_2x[2 * i].val[0],
src_lines_intertwined_2x[2 * i + 1].val[0]);
src_lines_intertwined_4x[2 * i + 1] =
vzipq_u16(src_lines_intertwined_2x[2 * i].val[1],
src_lines_intertwined_2x[2 * i + 1].val[1]);
}
// Store the resulting WidthMajor 4x2 cells in the destination packed block
for (int outer = 0; outer < 2; outer++) {
for (int inner = 0; inner < 2; inner++) {
for (int cell = 0; cell < kCells; cell++) {
uint8x8_t value = vreinterpret_u8_u16(vget_low_u16(
src_lines_intertwined_4x[2 * cell + outer].val[inner]));
vst1_u8(dst_ptr, value);
dst_ptr += 8;
}
for (int cell = 0; cell < kCells; cell++) {
uint8x8_t value = vreinterpret_u8_u16(vget_high_u16(
src_lines_intertwined_4x[2 * cell + outer].val[inner]));
vst1_u8(dst_ptr, value);
dst_ptr += 8;
}
}
}
// Compute sums across the depth dimension
uint16x8_t sums_of_2[kCells][4];
for (int outer = 0; outer < 2; outer++) {
for (int inner = 0; inner < 2; inner++) {
int i = 2 * outer + inner;
for (int cell = 0; cell < kCells; cell++) {
sums_of_2[cell][i] = vpaddlq_u8(vreinterpretq_u8_u16(
src_lines_intertwined_4x[2 * cell + outer].val[inner]));
}
}
}
uint16x8_t sums_of_4[kCells][2];
for (int i = 0; i < 2; i++) {
for (int cell = 0; cell < kCells; cell++) {
sums_of_4[cell][i] =
vaddq_u16(sums_of_2[cell][2 * i], sums_of_2[cell][2 * i + 1]);
}
}
uint16x8_t sums_of_8[kCells];
for (int cell = 0; cell < kCells; cell++) {
sums_of_8[cell] = vaddq_u16(sums_of_4[cell][0], sums_of_4[cell][1]);
}
uint16x4_t sums_of_16[kCells];
for (int cell = 0; cell < kCells; cell++) {
sums_of_16[cell] = vadd_u16(vget_low_u16(sums_of_8[cell]),
vget_high_u16(sums_of_8[cell]));
}
// Update the sums_of_each_slice vector
for (int cell = 0; cell < kCells; cell++) {
int32x4_t s = vreinterpretq_s32_u32(vmovl_u16(sums_of_16[cell]));
std::int32_t* sums_of_each_slice_ptr =
dst->sums_of_each_slice() + start_width + 4 * cell;
vst1q_s32(sums_of_each_slice_ptr,
vaddq_s32(s, vld1q_s32(sums_of_each_slice_ptr)));
}
dst->seek_forward_n_cells(kCells * kRegisterSize / kCellDepth);
}
};
#ifdef GEMMLOWP_NEON_32
inline int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
const int16x4_t c = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
const int16x4_t d = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
return vcombine_s16(c, d);
}
#endif
template <int Width>
using Int8FastKernelFormat =
KernelSideFormatInt8<CellFormat<Width, 16, CellOrder::WidthMajor>, 1>;
template <int Width>
class PackingRegisterBlock<WidthMajorUint8SideMap,
PackedSideBlock<Int8FastKernelFormat<Width>>>
: public PackingRegisterBlockBase<
WidthMajorUint8SideMap,
PackedSideBlock<Int8FastKernelFormat<Width>>> {
public:
static_assert(Width == 2 || Width == 4, "");
typedef Int8FastKernelFormat<Width> KernelSideFormat;
typedef typename KernelSideFormat::Cell CellFormat;
static const int kCells = KernelSideFormat::kCells;
static const int kCellWidth = CellFormat::kWidth;
static const int kKernelWidth = CellFormat::kWidth * kCells;
static const int kCellDepth = CellFormat::kDepth;
static const int kCellSize = CellFormat::kSize;
void Pack(PackedSideBlock<KernelSideFormat>* dst, int start_width) {
std::int32_t* sums_ptr = dst->sums_of_each_slice() + start_width;
std::uint8_t* dst_ptr = dst->current_data();
const std::uint8_t* const src_ptr = this->complete_src_.data();
const int stride = this->complete_src_.stride();
// Load source WidthMajor data
uint8x16_t src_lines[Width];
for (int i = 0; i < Width; i++) {
src_lines[i] = vld1q_u8(src_ptr + i * stride);
}
const uint8x16_t sign_bit_dup = vdupq_n_u8(0x80);
for (int i = 0; i < Width; i++) {
src_lines[i] = veorq_u8(src_lines[i], sign_bit_dup);
}
for (int i = 0; i < Width; i++) {
vst1q_u8(dst_ptr + 16 * i, src_lines[i]);
}
int16x8_t sums2[Width];
for (int i = 0; i < Width; i++) {
const int8x8_t lo = vreinterpret_s8_u8(vget_low_u8(src_lines[i]));
const int8x8_t hi = vreinterpret_s8_u8(vget_high_u8(src_lines[i]));
sums2[i] = vaddl_s8(lo, hi);
}
int16x8_t sums4[Width / 2];
for (int i = 0; i < Width / 2; i++) {
sums4[i] = vpaddq_s16(sums2[2 * i], sums2[2 * i + 1]);
}
if (Width == 4) {
int32x4_t sum = vld1q_s32(sums_ptr);
int16x8_t sums8 = vpaddq_s16(sums4[0], sums4[1]);
sum = vpadalq_s16(sum, sums8);
vst1q_s32(sums_ptr, sum);
} else {
assert(Width == 2);
int32x2_t sum = vld1_s32(sums_ptr);
int16x4_t sums8 =
vpadd_s16(vget_low_s16(sums4[0]), vget_high_s16(sums4[0]));
sum = vpadal_s16(sum, sums8);
vst1_s32(sums_ptr, sum);
}
dst->seek_forward_n_cells(1);
}
};
template <int Width>
using Int8InputsFastKernelFormat =
KernelSideFormatInt8Inputs<CellFormat<Width, 16, CellOrder::WidthMajor>, 1>;
// Same as above, but for int8 inputs, avoiding the uint8 -> int8 conversion.
template <int Width>
class PackingRegisterBlock<WidthMajorInt8SideMap,
PackedSideBlock<Int8InputsFastKernelFormat<Width>>>
: public PackingRegisterBlockBase<
WidthMajorInt8SideMap,
PackedSideBlock<Int8InputsFastKernelFormat<Width>>> {
public:
static_assert(Width == 2 || Width == 4, "");
typedef Int8InputsFastKernelFormat<Width> KernelSideFormat;
typedef typename KernelSideFormat::Cell CellFormat;
static const int kCells = KernelSideFormat::kCells;
static const int kCellWidth = CellFormat::kWidth;
static const int kKernelWidth = CellFormat::kWidth * kCells;
static const int kCellDepth = CellFormat::kDepth;
static const int kCellSize = CellFormat::kSize;
void Pack(PackedSideBlock<KernelSideFormat>* dst, int start_width) {
std::int32_t* sums_ptr = dst->sums_of_each_slice() + start_width;
std::int8_t* dst_ptr = reinterpret_cast<std::int8_t*>(dst->current_data());
const std::int8_t* const src_ptr = this->complete_src_.data();
const int stride = this->complete_src_.stride();
// Load source WidthMajor data
int8x16_t src_lines[Width];
for (int i = 0; i < Width; i++) {
src_lines[i] = vld1q_s8(src_ptr + i * stride);
}
for (int i = 0; i < Width; i++) {
vst1q_s8(dst_ptr + 16 * i, src_lines[i]);
}
int16x8_t sums2[Width];
for (int i = 0; i < Width; i++) {
const int8x8_t lo = vget_low_s8(src_lines[i]);
const int8x8_t hi = vget_high_s8(src_lines[i]);
sums2[i] = vaddl_s8(lo, hi);
}
int16x8_t sums4[Width / 2];
for (int i = 0; i < Width / 2; i++) {
sums4[i] = vpaddq_s16(sums2[2 * i], sums2[2 * i + 1]);
}
if (Width == 4) {
int32x4_t sum = vld1q_s32(sums_ptr);
int16x8_t sums8 = vpaddq_s16(sums4[0], sums4[1]);
sum = vpadalq_s16(sum, sums8);
vst1q_s32(sums_ptr, sum);
} else {
assert(Width == 2);
int32x2_t sum = vld1_s32(sums_ptr);
int16x4_t sums8 =
vpadd_s16(vget_low_s16(sums4[0]), vget_high_s16(sums4[0]));
sum = vpadal_s16(sum, sums8);
vst1_s32(sums_ptr, sum);
}
dst->seek_forward_n_cells(1);
}
};
} // namespace gemmlowp
#endif // GEMMLOWP_INTERNAL_PACK_NEON_H_
|