1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
|
// Copyright 2017 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// simd_wrappers.h: some inline functions wrapping SIMD intrinsics,
// extending the set of such functions from fixedpoint.h.
#ifndef GEMMLOWP_INTERNAL_SIMD_WRAPPERS_H_
#define GEMMLOWP_INTERNAL_SIMD_WRAPPERS_H_
#include <algorithm>
#include <type_traits>
#include "../fixedpoint/fixedpoint.h"
namespace gemmlowp {
template <typename ScalarType, int ScalarCount>
struct RegisterType {
using Type = ScalarType;
};
inline std::int32_t Min(std::int32_t a, std::int32_t b) {
return std::min(a, b);
}
inline std::int32_t Max(std::int32_t a, std::int32_t b) {
return std::max(a, b);
}
inline void MulAdd(std::int32_t lhs, std::int32_t rhs, std::int32_t* acc) {
*acc += lhs * rhs;
}
template <typename tScalarType, int tScalarCount>
struct RegisterBuffer {
using ScalarType = tScalarType;
static constexpr int kScalarCount = tScalarCount;
using RegisterType = typename RegisterType<ScalarType, kScalarCount>::Type;
static_assert((kScalarCount & (kScalarCount - 1)) == 0,
"kScalarCount must be a power of two");
static_assert(sizeof(RegisterType) % sizeof(ScalarType) == 0, "");
static constexpr int kRegisterLanes =
sizeof(RegisterType) / sizeof(ScalarType);
static constexpr int kRegisterCount =
(kScalarCount * sizeof(ScalarType) + sizeof(RegisterType) - 1) /
sizeof(RegisterType);
RegisterType reg[kRegisterCount];
};
template <typename tScalarType, int tRows, int tCols>
struct RegisterBlock {
using ScalarType = tScalarType;
static constexpr int kRows = tRows;
static constexpr int kCols = tCols;
static constexpr int kScalarCount = kRows * kCols;
using BufferType = RegisterBuffer<ScalarType, kScalarCount>;
using RegisterType = typename BufferType::RegisterType;
static constexpr int kRegisterCount = BufferType::kRegisterCount;
static constexpr int kRegisterLanes = BufferType::kRegisterLanes;
BufferType buf;
};
template <typename RegisterBlockType>
struct RegisterBlockAddImpl {
static RegisterBlockType Run(const RegisterBlockType& lhs,
const RegisterBlockType& rhs) {
RegisterBlockType result;
for (int i = 0; i < RegisterBlockType::kRegisterCount; i++) {
result.buf.reg[i] = Add(lhs.buf.reg[i], rhs.buf.reg[i]);
}
return result;
}
};
template <typename RegisterBlockType>
RegisterBlockType RegisterBlockAdd(const RegisterBlockType& lhs,
const RegisterBlockType& rhs) {
return RegisterBlockAddImpl<RegisterBlockType>::Run(lhs, rhs);
}
template <typename LhsType, typename RhsType>
struct ShouldFlipLhsRhs {
static constexpr bool kValue =
(LhsType::kScalarCount < RhsType::kScalarCount) ||
(LhsType::kScalarCount == RhsType::kScalarCount &&
(LhsType::kRows < RhsType::kRows));
};
template <typename LhsType, typename RhsType,
bool Flip = ShouldFlipLhsRhs<LhsType, RhsType>::kValue>
struct FlipLhsRhs {
using FlippedLhsType = LhsType;
using FlippedRhsType = RhsType;
static const FlippedLhsType& FlippedLhs(const LhsType& lhs,
const RhsType& rhs) {
(void)rhs;
return lhs;
}
static const FlippedRhsType& FlippedRhs(const LhsType& lhs,
const RhsType& rhs) {
(void)lhs;
return rhs;
}
};
template <typename LhsType, typename RhsType>
struct FlipLhsRhs<LhsType, RhsType, true> {
using FlippedLhsType = RhsType;
using FlippedRhsType = LhsType;
static const FlippedLhsType& FlippedLhs(const LhsType& lhs,
const RhsType& rhs) {
(void)lhs;
return rhs;
}
static const FlippedRhsType& FlippedRhs(const LhsType& lhs,
const RhsType& rhs) {
(void)rhs;
return lhs;
}
};
template <typename Lhs, typename Rhs>
struct BroadcastBinaryOpShape {
static constexpr int kRows =
Lhs::kRows > Rhs::kRows ? Lhs::kRows : Rhs::kRows;
static constexpr int kCols =
Lhs::kCols > Rhs::kCols ? Lhs::kCols : Rhs::kCols;
};
template <typename Lhs, typename Rhs>
struct BroadcastBinaryOpRegisterBlock {
using Shape = BroadcastBinaryOpShape<Lhs, Rhs>;
using ScalarType = typename Lhs::ScalarType;
using Type = RegisterBlock<ScalarType, Shape::kRows, Shape::kCols>;
};
template <typename Lhs, typename Rhs>
struct BroadcastAddImpl {
using ResultBlockType =
typename BroadcastBinaryOpRegisterBlock<Lhs, Rhs>::Type;
static ResultBlockType Run(const Lhs& lhs, const Rhs& rhs) {
ResultBlockType result;
static constexpr int Rows = ResultBlockType::kRows;
static constexpr int Cols = ResultBlockType::kCols;
static constexpr int LhsRows = Lhs::kRows;
static constexpr int LhsCols = Lhs::kCols;
static constexpr int RhsRows = Rhs::kRows;
static constexpr int RhsCols = Rhs::kCols;
static_assert(LhsRows == Rows || LhsRows == 1, "");
static_assert(RhsRows == Rows || RhsRows == 1, "");
static_assert(LhsCols == Cols || LhsCols == 1, "");
static_assert(RhsCols == Cols || RhsCols == 1, "");
static_assert(ResultBlockType::kRegisterLanes == 1,
"This path is only for scalar values");
static_assert(Lhs::kRegisterLanes == 1,
"This path is only for scalar values");
static_assert(Rhs::kRegisterLanes == 1,
"This path is only for scalar values");
for (int c = 0; c < Cols; c++) {
const int lhs_c = LhsCols == Cols ? c : 0;
const int rhs_c = RhsCols == Cols ? c : 0;
for (int r = 0; r < Rows; r++) {
const int lhs_r = LhsRows == Rows ? r : 0;
const int rhs_r = RhsRows == Rows ? r : 0;
result.buf.reg[r + c * Rows] =
Add(lhs.buf.reg[lhs_r + lhs_c * LhsRows],
rhs.buf.reg[rhs_r + rhs_c * RhsRows]);
}
}
return result;
}
};
template <typename Lhs, typename Rhs>
typename BroadcastBinaryOpRegisterBlock<Lhs, Rhs>::Type BroadcastAdd(
const Lhs& lhs, const Rhs& rhs) {
using Flip = FlipLhsRhs<Lhs, Rhs>;
return BroadcastAddImpl<
typename Flip::FlippedLhsType,
typename Flip::FlippedRhsType>::Run(Flip::FlippedLhs(lhs, rhs),
Flip::FlippedRhs(lhs, rhs));
}
template <typename Lhs, typename Rhs>
struct BroadcastShiftLeftImpl {
using ResultBlockType =
typename BroadcastBinaryOpRegisterBlock<Lhs, Rhs>::Type;
static ResultBlockType Run(const Lhs& lhs, const Rhs& rhs) {
ResultBlockType result;
static constexpr int Rows = ResultBlockType::kRows;
static constexpr int Cols = ResultBlockType::kCols;
static constexpr int LhsRows = Lhs::kRows;
static constexpr int LhsCols = Lhs::kCols;
static constexpr int RhsRows = Rhs::kRows;
static constexpr int RhsCols = Rhs::kCols;
static_assert(LhsRows == Rows || LhsRows == 1, "");
static_assert(RhsRows == Rows || RhsRows == 1, "");
static_assert(LhsCols == Cols || LhsCols == 1, "");
static_assert(RhsCols == Cols || RhsCols == 1, "");
static_assert(ResultBlockType::kRegisterLanes == 1,
"This path is only for scalar values");
static_assert(Lhs::kRegisterLanes == 1,
"This path is only for scalar values");
static_assert(Rhs::kRegisterLanes == 1,
"This path is only for scalar values");
for (int c = 0; c < Cols; c++) {
const int lhs_c = LhsCols == Cols ? c : 0;
const int rhs_c = RhsCols == Cols ? c : 0;
for (int r = 0; r < Rows; r++) {
const int lhs_r = LhsRows == Rows ? r : 0;
const int rhs_r = RhsRows == Rows ? r : 0;
result.buf.reg[r + c * Rows] =
ShiftLeft(lhs.buf.reg[lhs_r + lhs_c * LhsRows],
rhs.buf.reg[rhs_r + rhs_c * RhsRows]);
}
}
return result;
}
};
template <typename Lhs, typename Rhs>
typename BroadcastBinaryOpRegisterBlock<Lhs, Rhs>::Type BroadcastShiftLeft(
const Lhs& lhs, const Rhs& rhs) {
using Flip = FlipLhsRhs<Lhs, Rhs>;
return BroadcastShiftLeftImpl<
typename Flip::FlippedLhsType,
typename Flip::FlippedRhsType>::Run(Flip::FlippedLhs(lhs, rhs),
Flip::FlippedRhs(lhs, rhs));
}
template <typename Lhs, typename Rhs>
struct BroadcastSaturatingRoundingDoublingHighMulImpl {
using ResultBlockType =
typename BroadcastBinaryOpRegisterBlock<Lhs, Rhs>::Type;
static ResultBlockType Run(const Lhs& lhs, const Rhs& rhs) {
ResultBlockType result;
static constexpr int Rows = ResultBlockType::kRows;
static constexpr int Cols = ResultBlockType::kCols;
static constexpr int LhsRows = Lhs::kRows;
static constexpr int LhsCols = Lhs::kCols;
static constexpr int RhsRows = Rhs::kRows;
static constexpr int RhsCols = Rhs::kCols;
static_assert(LhsRows == Rows || LhsRows == 1, "");
static_assert(RhsRows == Rows || RhsRows == 1, "");
static_assert(LhsCols == Cols || LhsCols == 1, "");
static_assert(RhsCols == Cols || RhsCols == 1, "");
static_assert(ResultBlockType::kRegisterLanes == 1,
"This path is only for scalar values");
static_assert(Lhs::kRegisterLanes == 1,
"This path is only for scalar values");
static_assert(Rhs::kRegisterLanes == 1,
"This path is only for scalar values");
for (int c = 0; c < Cols; c++) {
const int lhs_c = LhsCols == Cols ? c : 0;
const int rhs_c = RhsCols == Cols ? c : 0;
for (int r = 0; r < Rows; r++) {
const int lhs_r = LhsRows == Rows ? r : 0;
const int rhs_r = RhsRows == Rows ? r : 0;
result.buf.reg[r + c * Rows] = SaturatingRoundingDoublingHighMul(
lhs.buf.reg[lhs_r + lhs_c * LhsRows],
rhs.buf.reg[rhs_r + rhs_c * RhsRows]);
}
}
return result;
}
};
template <typename Lhs, typename Rhs>
typename BroadcastBinaryOpRegisterBlock<Lhs, Rhs>::Type
BroadcastSaturatingRoundingDoublingHighMul(const Lhs& lhs, const Rhs& rhs) {
using Flip = FlipLhsRhs<Lhs, Rhs>;
return BroadcastSaturatingRoundingDoublingHighMulImpl<
typename Flip::FlippedLhsType,
typename Flip::FlippedRhsType>::Run(Flip::FlippedLhs(lhs, rhs),
Flip::FlippedRhs(lhs, rhs));
}
template <typename Lhs, typename Rhs>
struct BroadcastRoundingDivideByPOTImpl {
using ResultBlockType =
typename BroadcastBinaryOpRegisterBlock<Lhs, Rhs>::Type;
static ResultBlockType Run(const Lhs& lhs, const Rhs& rhs) {
ResultBlockType result;
static constexpr int Rows = ResultBlockType::kRows;
static constexpr int Cols = ResultBlockType::kCols;
static constexpr int LhsRows = Lhs::kRows;
static constexpr int LhsCols = Lhs::kCols;
static constexpr int RhsRows = Rhs::kRows;
static constexpr int RhsCols = Rhs::kCols;
static_assert(LhsRows == Rows || LhsRows == 1, "");
static_assert(RhsRows == Rows || RhsRows == 1, "");
static_assert(LhsCols == Cols || LhsCols == 1, "");
static_assert(RhsCols == Cols || RhsCols == 1, "");
static_assert(ResultBlockType::kRegisterLanes == 1,
"This path is only for scalar values");
static_assert(Lhs::kRegisterLanes == 1,
"This path is only for scalar values");
static_assert(Rhs::kRegisterLanes == 1,
"This path is only for scalar values");
for (int c = 0; c < Cols; c++) {
const int lhs_c = LhsCols == Cols ? c : 0;
const int rhs_c = RhsCols == Cols ? c : 0;
for (int r = 0; r < Rows; r++) {
const int lhs_r = LhsRows == Rows ? r : 0;
const int rhs_r = RhsRows == Rows ? r : 0;
result.buf.reg[r + c * Rows] =
RoundingDivideByPOT(lhs.buf.reg[lhs_r + lhs_c * LhsRows],
rhs.buf.reg[rhs_r + rhs_c * RhsRows]);
}
}
return result;
}
};
template <typename Lhs, typename Rhs>
typename BroadcastBinaryOpRegisterBlock<Lhs, Rhs>::Type
BroadcastRoundingDivideByPOT(const Lhs& lhs, const Rhs& rhs) {
using Flip = FlipLhsRhs<Lhs, Rhs>;
return BroadcastRoundingDivideByPOTImpl<
typename Flip::FlippedLhsType,
typename Flip::FlippedRhsType>::Run(Flip::FlippedLhs(lhs, rhs),
Flip::FlippedRhs(lhs, rhs));
}
template <typename Lhs, typename Rhs>
struct BroadcastMulImpl {
using ResultBlockType =
typename BroadcastBinaryOpRegisterBlock<Lhs, Rhs>::Type;
static ResultBlockType Run(const Lhs& lhs, const Rhs& rhs) {
ResultBlockType result;
static constexpr int Rows = ResultBlockType::kRows;
static constexpr int Cols = ResultBlockType::kCols;
static constexpr int LhsRows = Lhs::kRows;
static constexpr int LhsCols = Lhs::kCols;
static constexpr int RhsRows = Rhs::kRows;
static constexpr int RhsCols = Rhs::kCols;
static_assert(ResultBlockType::kRegisterLanes == 1,
"This path is only for scalar values");
static_assert(Lhs::kRegisterLanes == 1,
"This path is only for scalar values");
static_assert(Rhs::kRegisterLanes == 1,
"This path is only for scalar values");
static_assert(LhsRows == Rows || LhsRows == 1, "");
static_assert(RhsRows == Rows || RhsRows == 1, "");
static_assert(LhsCols == Cols || LhsCols == 1, "");
static_assert(RhsCols == Cols || RhsCols == 1, "");
for (int c = 0; c < Cols; c++) {
const int lhs_c = LhsCols == Cols ? c : 0;
const int rhs_c = RhsCols == Cols ? c : 0;
for (int r = 0; r < Rows; r++) {
const int lhs_r = LhsRows == Rows ? r : 0;
const int rhs_r = RhsRows == Rows ? r : 0;
result.buf.reg[r + c * Rows] =
Mul(lhs.buf.reg[lhs_r + lhs_c * LhsRows],
rhs.buf.reg[rhs_r + rhs_c * RhsRows]);
}
}
return result;
}
};
template <typename Lhs, typename Rhs>
typename BroadcastBinaryOpRegisterBlock<Lhs, Rhs>::Type BroadcastMul(
const Lhs& lhs, const Rhs& rhs) {
using Flip = FlipLhsRhs<Lhs, Rhs>;
return BroadcastMulImpl<
typename Flip::FlippedLhsType,
typename Flip::FlippedRhsType>::Run(Flip::FlippedLhs(lhs, rhs),
Flip::FlippedRhs(lhs, rhs));
}
template <typename Lhs, typename Rhs, typename Acc>
struct BroadcastMulAddImpl {
static void Run(const Lhs& lhs, const Rhs& rhs, Acc* acc) {
static constexpr int Rows = Acc::kRows;
static constexpr int Cols = Acc::kCols;
static constexpr int LhsRows = Lhs::kRows;
static constexpr int LhsCols = Lhs::kCols;
static constexpr int RhsRows = Rhs::kRows;
static constexpr int RhsCols = Rhs::kCols;
static_assert(Acc::kRegisterLanes == 1,
"This path is only for scalar values");
static_assert(Lhs::kRegisterLanes == 1,
"This path is only for scalar values");
static_assert(Rhs::kRegisterLanes == 1,
"This path is only for scalar values");
static_assert(LhsRows == Rows || LhsRows == 1, "");
static_assert(RhsRows == Rows || RhsRows == 1, "");
static_assert(LhsCols == Cols || LhsCols == 1, "");
static_assert(RhsCols == Cols || RhsCols == 1, "");
for (int c = 0; c < Cols; c++) {
const int lhs_c = LhsCols == Cols ? c : 0;
const int rhs_c = RhsCols == Cols ? c : 0;
for (int r = 0; r < Rows; r++) {
const int lhs_r = LhsRows == Rows ? r : 0;
const int rhs_r = RhsRows == Rows ? r : 0;
MulAdd(lhs.buf.reg[lhs_r + lhs_c * LhsRows],
rhs.buf.reg[rhs_r + rhs_c * RhsRows],
&acc->buf.reg[r + c * Rows]);
}
}
}
};
template <typename Lhs, typename Rhs, typename Acc>
void BroadcastMulAdd(const Lhs& lhs, const Rhs& rhs, Acc* acc) {
using Flip = FlipLhsRhs<Lhs, Rhs>;
BroadcastMulAddImpl<typename Flip::FlippedLhsType,
typename Flip::FlippedRhsType,
Acc>::Run(Flip::FlippedLhs(lhs, rhs),
Flip::FlippedRhs(lhs, rhs), acc);
}
template <typename RegisterBlockType, typename SrcObjectType>
struct LoadImpl {
static_assert(std::is_same<SrcObjectType, void>::value,
"This generic impl should never be hit");
};
template <typename ScalarType, int Rows, int Cols, typename SrcScalarType>
struct LoadImpl<RegisterBlock<ScalarType, Rows, Cols>,
MatrixMap<SrcScalarType, MapOrder::ColMajor>> {
using RegisterBlockType = RegisterBlock<ScalarType, Rows, Cols>;
using SrcObjectType = MatrixMap<SrcScalarType, MapOrder::ColMajor>;
static RegisterBlockType Run(const SrcObjectType& src, int row, int col) {
RegisterBlockType result;
int i = 0;
for (int c = 0; c < Cols; c++) {
const ScalarType* src_ptr = src.data(row, col + c);
for (int r = 0; r < Rows; r++) {
result.buf.reg[i++] = *src_ptr++;
}
}
return result;
}
};
template <typename ScalarType, int Rows, int Cols, typename SrcScalarType,
VectorShape Shape>
struct LoadImpl<RegisterBlock<ScalarType, Rows, Cols>,
VectorMap<SrcScalarType, Shape>> {
using RegisterBlockType = RegisterBlock<ScalarType, Rows, Cols>;
using SrcObjectType = VectorMap<SrcScalarType, Shape>;
static RegisterBlockType Run(const SrcObjectType& src, int pos) {
static_assert(Shape == VectorShape::Col || Rows == 1, "");
static_assert(Shape == VectorShape::Row || Cols == 1, "");
RegisterBlockType result;
for (int i = 0; i < Rows * Cols; i++) {
result.buf.reg[i] = src(pos + i);
}
return result;
}
};
template <typename ScalarType, int Rows, int Cols, typename SrcScalarType,
VectorShape Shape>
struct LoadImpl<RegisterBlock<ScalarType, Rows, Cols>,
VectorDup<SrcScalarType, Shape>> {
using RegisterBlockType = RegisterBlock<ScalarType, Rows, Cols>;
using SrcObjectType = VectorDup<SrcScalarType, Shape>;
static RegisterBlockType Run(const SrcObjectType& src, int) {
static_assert(Shape == VectorShape::Col || Rows == 1, "");
static_assert(Shape == VectorShape::Row || Cols == 1, "");
RegisterBlockType result;
for (int i = 0; i < Rows * Cols; i++) {
result.buf.reg[i] = src(0);
}
return result;
}
};
template <typename RegisterBlockType, typename SrcObjectType>
RegisterBlockType Load(const SrcObjectType& src, int row, int col) {
return LoadImpl<RegisterBlockType, SrcObjectType>::Run(src, row, col);
}
template <typename RegisterBlockType, typename SrcObjectType>
RegisterBlockType Load(const SrcObjectType& src, int pos) {
return LoadImpl<RegisterBlockType, SrcObjectType>::Run(src, pos);
}
template <typename RegisterBlockType>
struct LoadContiguousImpl {
using ScalarType = typename RegisterBlockType::ScalarType;
static_assert(RegisterBlockType::kRegisterLanes == 1,
"This path is only for scalar values");
static RegisterBlockType Run(const ScalarType* src) {
RegisterBlockType result;
for (int i = 0; i < RegisterBlockType::kScalarCount; i++) {
result.buf.reg[i] = src[i];
}
return result;
}
};
template <typename RegisterBlockType>
RegisterBlockType LoadContiguous(
const typename RegisterBlockType::ScalarType* src) {
return LoadContiguousImpl<RegisterBlockType>::Run(src);
}
template <int BroadcastRows, int BroadcastCols, typename SrcObjectType>
struct LoadForBroadcastingShape {};
template <int BroadcastRows, int BroadcastCols, typename ScalarType,
VectorShape Shape>
struct LoadForBroadcastingShape<BroadcastRows, BroadcastCols,
VectorMap<ScalarType, Shape>> {
static constexpr int kRows = Shape == VectorShape::Col ? BroadcastRows : 1;
static constexpr int kCols = Shape == VectorShape::Row ? BroadcastCols : 1;
};
template <int BroadcastRows, int BroadcastCols, typename ScalarType,
VectorShape Shape>
struct LoadForBroadcastingShape<BroadcastRows, BroadcastCols,
VectorDup<ScalarType, Shape>> {
static constexpr int kRows = 1;
static constexpr int kCols = 1;
};
template <typename RegisterBlockType, typename SrcObjectType>
struct LoadForBroadcastingRegisterBlock {
using Shape =
LoadForBroadcastingShape<RegisterBlockType::kRows,
RegisterBlockType::kCols, SrcObjectType>;
using ScalarType = typename RegisterBlockType::ScalarType;
using Type = RegisterBlock<ScalarType, Shape::kRows, Shape::kCols>;
};
template <typename RegisterBlockType, typename SrcObjectType>
struct LoadForBroadcastingImpl {
static_assert(std::is_same<SrcObjectType, void>::value,
"This generic impl should never be hit");
};
template <typename ScalarType, int Rows, int Cols, typename SrcScalarType,
VectorShape Shape>
struct LoadForBroadcastingImpl<RegisterBlock<ScalarType, Rows, Cols>,
VectorMap<SrcScalarType, Shape>> {
using RegisterBlockType = RegisterBlock<ScalarType, Rows, Cols>;
using SrcObjectType = VectorMap<SrcScalarType, Shape>;
using ResultBlockType =
typename LoadForBroadcastingRegisterBlock<RegisterBlockType,
SrcObjectType>::Type;
static_assert(ResultBlockType::kRegisterLanes == 1,
"This path is only for scalar values");
static ResultBlockType Run(const SrcObjectType& src, int pos) {
ResultBlockType result;
for (int c = 0; c < ResultBlockType::kCols; c++) {
for (int r = 0; r < ResultBlockType::kRows; r++) {
const int i = Shape == VectorShape::Col ? r : c;
result.buf.reg[r + c * ResultBlockType::kRows] = src(pos + i);
}
}
return result;
}
};
template <typename ScalarType, int Rows, int Cols, typename SrcScalarType,
VectorShape Shape>
struct LoadForBroadcastingImpl<RegisterBlock<ScalarType, Rows, Cols>,
VectorDup<SrcScalarType, Shape>> {
using RegisterBlockType = RegisterBlock<ScalarType, Rows, Cols>;
using SrcObjectType = VectorDup<SrcScalarType, Shape>;
using ResultBlockType =
typename LoadForBroadcastingRegisterBlock<RegisterBlockType,
SrcObjectType>::Type;
static_assert(ResultBlockType::kRegisterLanes == 1,
"This path is only for scalar values");
static ResultBlockType Run(const SrcObjectType& src, int) {
ResultBlockType result;
for (int c = 0; c < ResultBlockType::kCols; c++) {
for (int r = 0; r < ResultBlockType::kRows; r++) {
result.buf.reg[r + c * ResultBlockType::kRows] = src(0);
}
}
return result;
}
};
template <typename RegisterBlockType, typename SrcObjectType>
typename LoadForBroadcastingRegisterBlock<RegisterBlockType,
SrcObjectType>::Type
LoadForBroadcasting(const SrcObjectType& src, int row, int col) {
return LoadForBroadcastingImpl<RegisterBlockType, SrcObjectType>::Run(
src, row, col);
}
template <typename RegisterBlockType, typename SrcObjectType>
typename LoadForBroadcastingRegisterBlock<RegisterBlockType,
SrcObjectType>::Type
LoadForBroadcasting(const SrcObjectType& src, int pos) {
return LoadForBroadcastingImpl<RegisterBlockType, SrcObjectType>::Run(src,
pos);
}
template <int ConstantValue, typename RegisterBlockType>
struct AddConstantImpl {
static void Run(RegisterBlockType* block) {
using RegisterType = typename RegisterBlockType::RegisterType;
const RegisterType dup = Dup<RegisterType>(ConstantValue);
for (int i = 0; i < RegisterBlockType::kRegisterCount; i++) {
block->buf.reg[i] = Add(block->buf.reg[i], dup);
}
}
};
template <typename RegisterBlockType>
struct AddConstantImpl<0, RegisterBlockType> {
static void Run(RegisterBlockType*) {
// This is a no-op.
}
};
template <int ConstantValue, typename RegisterBlockType>
void AddConstant(RegisterBlockType* block) {
AddConstantImpl<ConstantValue, RegisterBlockType>::Run(block);
}
template <int N>
using RegBufferInt32 = RegisterBuffer<std::int32_t, N>;
template <int N>
using RegBufferInt16 = RegisterBuffer<std::int16_t, N>;
template <int N>
using RegBufferUint8 = RegisterBuffer<std::uint8_t, N>;
template <int N>
using RegBufferInt8 = RegisterBuffer<std::int8_t, N>;
template <int R, int C>
using RegBlockInt32 = RegisterBlock<std::int32_t, R, C>;
template <int R, int C>
using RegBlockInt16 = RegisterBlock<std::int16_t, R, C>;
template <int R, int C>
using RegBlockUint8 = RegisterBlock<std::uint8_t, R, C>;
template <int R, int C>
using RegBlockInt8 = RegisterBlock<std::int8_t, R, C>;
} // end namespace gemmlowp
#if defined GEMMLOWP_NEON
#include "simd_wrappers_neon.h"
#elif defined GEMMLOWP_SSE4
#include "simd_wrappers_sse.h"
#elif defined GEMMLOWP_MSA
#include "simd_wrappers_msa.h"
#endif
#endif // GEMMLOWP_INTERNAL_SIMD_WRAPPERS_H_
|