1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
// Copyright 2018 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// simd_wrappers_msa.h: MSA specialization of simd_wrappers.h
#ifndef GEMMLOWP_INTERNAL_SIMD_WRAPPERS_MSA_H_
#define GEMMLOWP_INTERNAL_SIMD_WRAPPERS_MSA_H_
#include <msa.h>
namespace gemmlowp {
using Int32x4 = v4i32;
using Int16x8 = v8i16;
using Uint8x16 = v16i8;
template <int ScalarCount>
struct RegisterType<std::int32_t, ScalarCount> {
using Type =
typename std::conditional<ScalarCount >= 4, Int32x4, std::int32_t>::type;
};
template <int ScalarCount>
struct RegisterType<std::int16_t, ScalarCount> {
using Type = typename std::conditional<ScalarCount >= 8, Int16x8, std::int16_t>::type;
};
template <int ScalarCount>
struct RegisterType<std::uint8_t, ScalarCount> {
using Type = typename std::conditional<
ScalarCount >= 16, Uint8x16,
typename std::conditional<ScalarCount >= 4, std::uint32_t,
std::uint8_t>::type>::type;
};
inline Int32x4 LoadInt32x4(const std::int32_t* src) {
return __builtin_msa_ld_w(const_cast<std::int32_t*>(src), 0);
}
inline Int32x4 LoadInt32x4(const Int32x4* src) {
return __builtin_msa_ld_w(const_cast<Int32x4*>(src), 0);
}
inline void StoreInt32x4(std::int32_t* dst, Int32x4 value) {
__builtin_msa_st_w(value, dst, 0);
}
inline void StoreInt32x4(Int32x4* dst, Int32x4 value) {
__builtin_msa_st_w(value, dst, 0);
}
inline Int16x8 LoadInt16x8(const std::int16_t* src) {
return __builtin_msa_ld_h(const_cast<std::int16_t*>(src), 0);
}
inline Int16x8 LoadInt16x8(const Int16x8* src) {
return __builtin_msa_ld_h(const_cast<Int16x8*>(src), 0);
}
inline void StoreInt16x8(std::int16_t* dst, Int16x8 value) { __builtin_msa_st_h(value, dst, 0); }
inline void StoreInt16x8(Int16x8* dst, Int16x8 value) { __builtin_msa_st_h(value, dst, 0); }
inline Uint8x16 LoadUint8x16(const std::uint8_t* src) {
return __builtin_msa_ld_b(const_cast<std::uint8_t*>(src), 0);
}
inline Uint8x16 LoadUint8x16(const Uint8x16* src) {
return __builtin_msa_ld_b(const_cast<Uint8x16*>(src), 0);
}
inline void StoreUint8x16(std::uint8_t* dst, Uint8x16 value) {
__builtin_msa_st_b(value, dst, 0);
}
inline void StoreUint8x16(Uint8x16* dst, Uint8x16 value) {
__builtin_msa_st_b(value, dst, 0);
}
template <int Lane>
std::int32_t GetLane(Int32x4 value) {
return __builtin_msa_copy_s_w(value, Lane);
}
template <int Lane>
Int32x4 DupLane(Int32x4 value) {
static_assert(Lane >= 0 && Lane <= 3, "");
return __builtin_msa_splati_w(value, Lane);
}
inline Int32x4 Mul(Int32x4 a, std::int32_t b) {
return __builtin_msa_mulv_w(a, __builtin_msa_fill_w(b));
}
inline Int32x4 Min(Int32x4 a, Int32x4 b) { return __builtin_msa_min_s_w(a, b); }
inline Int32x4 Max(Int32x4 a, Int32x4 b) { return __builtin_msa_max_s_w(a, b); }
inline Int32x4 SaturatingRoundingDoublingHighMul(Int32x4 a, std::int32_t b) {
return __builtin_msa_mulr_q_w(a, __builtin_msa_fill_w(b));
}
template <int Lane>
Int32x4 MulByRhsLane(Int32x4 a, Int32x4 b) {
static_assert(Lane >= 0 && Lane <= 3, "");
return __builtin_msa_mulv_w(a, __builtin_msa_splati_w(b, Lane));
}
static inline v4i32 workaround_msa_maddv_w(v4i32 a, v4i32 b, v4i32 c) {
// Workaround for incorrect encoding of maddv.df in gcc (a exchanged with c).
#if 0
return __builtin_msa_maddv_w(a, b, c);
#else
asm volatile("maddv.w %w[a], %w[b], %w[c]\n"
// Outputs
: [a] "+f"(a)
// Inputs
: [b] "f"(b), [c] "f"(c));
return a;
#endif
}
inline void MulAdd(Int32x4 lhs, Int32x4 rhs, Int32x4* acc) {
Int32x4 tmp = LoadInt32x4(acc);
tmp = workaround_msa_maddv_w(tmp, lhs, rhs);
StoreInt32x4(acc, tmp);
}
inline void MulAdd(Int32x4 lhs, std::int32_t rhs, Int32x4* acc) {
Int32x4 tmp = LoadInt32x4(acc);
tmp = workaround_msa_maddv_w(tmp, lhs, __builtin_msa_fill_w(rhs));
StoreInt32x4(acc, tmp);
}
template <int Lane>
inline void MulAddByRhsLane(Int32x4 lhs, Int32x4 rhs, Int32x4* acc) {
static_assert(Lane >= 0 && Lane <= 3, "");
Int32x4 tmp = LoadInt32x4(acc);
tmp = workaround_msa_maddv_w(tmp, lhs, __builtin_msa_splati_w(rhs, Lane));
StoreInt32x4(acc, tmp);
}
template <>
struct LoadContiguousImpl<RegBlockUint8<8, 8>> {
static RegBlockUint8<8, 8> Run(const std::uint8_t* src) {
RegBlockUint8<8, 8> result;
for (int i = 0; i < 4; i++) {
result.buf.reg[i] = LoadUint8x16(src + 16 * i);
}
return result;
}
};
template <>
struct LoadContiguousImpl<RegBlockInt32<8, 8>> {
static RegBlockInt32<8, 8> Run(const std::int32_t* src) {
RegBlockInt32<8, 8> result;
for (int i = 0; i < 16; i++) {
result.buf.reg[i] = LoadInt32x4(src + 4 * i);
}
return result;
}
};
template <>
struct LoadContiguousImpl<RegBlockInt16<8, 8>> {
static RegBlockInt16<8, 8> Run(const std::int16_t* src) {
RegBlockInt16<8, 8> result;
for (int i = 0; i < 8; i++) {
result.buf.reg[i] = LoadInt16x8(src + 8 * i);
}
return result;
}
};
} // end namespace gemmlowp
#include "simd_wrappers_common_neon_sse.h"
#endif // GEMMLOWP_INTERNAL_SIMD_WRAPPERS_MSA_H_
|