1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
// Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// unpack.h: unpacking the result blocks computed by compute.h,
// storing them into the destination matrix.
#ifndef GEMMLOWP_INTERNAL_UNPACK_H_
#define GEMMLOWP_INTERNAL_UNPACK_H_
#include "allocator.h"
#include "block_params.h"
#include "output.h"
#include "pack.h"
#include <cmath>
namespace gemmlowp {
class PackedResult {
public:
PackedResult(Allocator* _allocator, const BlockParams& _block_params)
: allocator_(_allocator), block_params_(_block_params) {
matrix_handle_ = allocator_->Reserve<std::int32_t>(block_params_.l2_rows *
block_params_.l2_cols);
}
~PackedResult() {}
MatrixMap<std::int32_t, MapOrder::ColMajor> Map() {
return MatrixMap<std::int32_t, MapOrder::ColMajor>(
allocator_->GetPointer<std::int32_t>(matrix_handle_),
block_params_.l2_rows, block_params_.l2_cols, block_params_.l2_rows);
}
MatrixMap<const std::int32_t, MapOrder::ColMajor> Map() const {
return MatrixMap<const std::int32_t, MapOrder::ColMajor>(
allocator_->GetPointer<const std::int32_t>(matrix_handle_),
block_params_.l2_rows, block_params_.l2_cols, block_params_.l2_rows);
}
private:
Allocator* allocator_;
Allocator::Handle matrix_handle_;
const BlockParams& block_params_;
};
struct MatrixBlockBounds {
int start_row;
int start_col;
int rows;
int cols;
MatrixBlockBounds(int start_row_, int start_col_, int rows_, int cols_)
: start_row(start_row_),
start_col(start_col_),
rows(rows_),
cols(cols_) {}
};
template <int Rows, int Cols, typename SrcMapType>
void PrefetchResultBlock(const SrcMapType& src,
const VectorMap<const std::int32_t, VectorShape::Col>&
lhs_sums_of_each_slice,
int src_row, int src_col) {
const std::int32_t* src_data = src.data(src_row, src_col);
const int src_stride = src.stride();
const std::int32_t* lhs_sums_data = lhs_sums_of_each_slice.data(src_row);
for (int r = 0; r < Rows; r += 4) {
Prefetch(lhs_sums_data + r);
}
for (int c = 0; c < Cols; c++) {
for (int r = 0; r < Rows; r += 4) {
Prefetch(src_data + r + c * src_stride);
}
}
}
template <typename KernelFormat, typename RegisterBlockType,
typename SrcMapType, typename LhsOffset, typename RhsOffset,
typename OutputPipelineExecutorType, typename DstType>
void UnpackResultBlock(const SrcMapType& src,
const OutputPipelineExecutorType& executor, DstType* dst,
const VectorMap<const std::int32_t, VectorShape::Col>&
lhs_sums_of_each_slice,
const VectorMap<const std::int32_t, VectorShape::Row>&
rhs_sums_of_each_slice,
const LhsOffset& lhs_offset, const RhsOffset& rhs_offset,
int depth, int src_row, int src_col, int src_global_row,
int src_global_col, int dst_row, int dst_col) {
using KernelLhsInputScalar = typename KernelFormat::Lhs::InputScalar;
using KernelLhsScalar = typename KernelFormat::Lhs::Scalar;
using KernelRhsInputScalar = typename KernelFormat::Rhs::InputScalar;
using KernelRhsScalar = typename KernelFormat::Rhs::Scalar;
static constexpr int KernelLhsZeroPointInput =
ZeroPointInputValue<KernelLhsInputScalar, KernelLhsScalar>::kValue;
static constexpr int KernelRhsZeroPointInput =
ZeroPointInputValue<KernelRhsInputScalar, KernelRhsScalar>::kValue;
auto acc = Load<RegisterBlockType>(src, src_row, src_col);
const auto& lhs_sums_of_each_slice_block =
LoadForBroadcasting<RegisterBlockType>(lhs_sums_of_each_slice, src_row);
const auto& rhs_sums_of_each_slice_block =
LoadForBroadcasting<RegisterBlockType>(rhs_sums_of_each_slice, src_col);
auto lhs_offset_block =
LoadForBroadcasting<RegisterBlockType>(lhs_offset, src_row);
auto rhs_offset_block =
LoadForBroadcasting<RegisterBlockType>(rhs_offset, src_col);
AddConstant<KernelLhsZeroPointInput>(&lhs_offset_block);
AddConstant<KernelRhsZeroPointInput>(&rhs_offset_block);
BroadcastMulAdd(lhs_sums_of_each_slice_block, rhs_offset_block, &acc);
for (int i = 0; i < decltype(rhs_offset_block)::kRegisterCount; i++) {
rhs_offset_block.buf.reg[i] = Mul(rhs_offset_block.buf.reg[i], depth);
}
BroadcastMulAdd(BroadcastAdd(rhs_sums_of_each_slice_block, rhs_offset_block),
lhs_offset_block, &acc);
executor.Execute(acc, dst, src_global_row, src_global_col, dst_row, dst_col);
}
template <typename KernelFormat, typename ResultBlockType,
typename PackedResultType, typename LhsOffset, typename RhsOffset,
typename OutputPipelineType>
void UnpackResult(ResultBlockType* dst, const MatrixBlockBounds& dst_block,
const PackedResultType& src, int depth,
const std::int32_t* lhs_sums_of_each_slice_ptr,
const std::int32_t* rhs_sums_of_each_slice_ptr,
const LhsOffset& lhs_offset, const RhsOffset& rhs_offset,
const OutputPipelineType& output_pipeline) {
ScopedProfilingLabel label(ResultBlockType::kOrder == MapOrder::ColMajor
? "unpack to column-major"
: "unpack to row-major");
assert(dst_block.start_row >= 0);
assert(dst_block.start_row + dst_block.rows <= dst->rows());
assert(dst_block.start_col >= 0);
assert(dst_block.start_col + dst_block.cols <= dst->cols());
const auto src_map = src.Map();
const VectorMap<const std::int32_t, VectorShape::Col> lhs_sums_of_each_slice(
lhs_sums_of_each_slice_ptr, dst_block.rows);
const VectorMap<const std::int32_t, VectorShape::Row> rhs_sums_of_each_slice(
rhs_sums_of_each_slice_ptr, dst_block.cols);
using Int32x1x1 = RegisterBlock<std::int32_t, 1, 1>;
using Int32x4x1 = RegisterBlock<std::int32_t, 4, 1>;
using Int32x8x1 = RegisterBlock<std::int32_t, 8, 1>;
using Int32x1x4 = RegisterBlock<std::int32_t, 1, 4>;
using Int32x4x4 = RegisterBlock<std::int32_t, 4, 4>;
using Int32x8x4 = RegisterBlock<std::int32_t, 8, 4>;
using DstScalarType = typename ResultBlockType::Scalar;
using DstScalarx8x8 = RegisterBlock<DstScalarType, 8, 8>;
OutputPipelineExecutor<OutputPipelineType, Int32x1x1>
output_pipeline_executor_1x1(output_pipeline);
OutputPipelineExecutor<OutputPipelineType, Int32x4x1>
output_pipeline_executor_4x1(output_pipeline);
OutputPipelineExecutor<OutputPipelineType, Int32x8x1>
output_pipeline_executor_8x1(output_pipeline);
OutputPipelineExecutor<OutputPipelineType, Int32x1x4>
output_pipeline_executor_1x4(output_pipeline);
OutputPipelineExecutor<OutputPipelineType, Int32x4x4>
output_pipeline_executor_4x4(output_pipeline);
OutputPipelineExecutor<OutputPipelineType, Int32x8x4>
output_pipeline_executor_8x4(output_pipeline);
int c8 = 0;
if (ResultBlockType::kOrder == MapOrder::RowMajor) {
for (; c8 <= dst_block.cols - 8; c8 += 8) {
PrefetchResultBlock<8, 8>(src_map, lhs_sums_of_each_slice, 0, c8);
int r = 0;
for (; r <= dst_block.rows - 8; r += 8) {
const int global_row = r + dst_block.start_row;
PrefetchResultBlock<8, 8>(src_map, lhs_sums_of_each_slice, r + 8, c8);
DstScalarType dst_colmajor_buf[64];
MatrixMap<DstScalarType, MapOrder::ColMajor> dst_colmajor_map(
dst_colmajor_buf, 8, 8);
for (int cx = 0; cx < 8; cx += 4) {
const int c = c8 + cx;
const int global_col = c + dst_block.start_col;
UnpackResultBlock<KernelFormat, Int32x8x4>(
src_map, output_pipeline_executor_8x4, &dst_colmajor_map,
lhs_sums_of_each_slice, rhs_sums_of_each_slice, lhs_offset,
rhs_offset, depth, r, c, global_row, global_col, 0, cx);
}
StoreFinalOutput(LoadContiguous<DstScalarx8x8>(dst_colmajor_buf), dst,
r + dst_block.start_row, c8 + dst_block.start_col);
}
for (; r <= dst_block.rows - 4; r += 4) {
const int global_row = r + dst_block.start_row;
for (int cx = 0; cx < 8; cx += 4) {
const int c = c8 + cx;
const int global_col = c + dst_block.start_col;
UnpackResultBlock<KernelFormat, Int32x4x4>(
src_map, output_pipeline_executor_4x4, dst,
lhs_sums_of_each_slice, rhs_sums_of_each_slice, lhs_offset,
rhs_offset, depth, r, c, global_row, global_col, global_row,
global_col);
}
}
for (; r < dst_block.rows; r++) {
const int global_row = r + dst_block.start_row;
for (int cx = 0; cx < 8; cx += 4) {
const int c = c8 + cx;
const int global_col = c + dst_block.start_col;
UnpackResultBlock<KernelFormat, Int32x1x4>(
src_map, output_pipeline_executor_1x4, dst,
lhs_sums_of_each_slice, rhs_sums_of_each_slice, lhs_offset,
rhs_offset, depth, r, c, global_row, global_col, global_row,
global_col);
}
}
}
}
int c = c8;
for (; c <= dst_block.cols - 4; c += 4) {
const int global_col = c + dst_block.start_col;
PrefetchResultBlock<8, 4>(src_map, lhs_sums_of_each_slice, 0, c);
int r = 0;
for (; r <= dst_block.rows - 8; r += 8) {
const int global_row = r + dst_block.start_row;
PrefetchResultBlock<8, 4>(src_map, lhs_sums_of_each_slice, r + 8, c);
UnpackResultBlock<KernelFormat, Int32x8x4>(
src_map, output_pipeline_executor_8x4, dst, lhs_sums_of_each_slice,
rhs_sums_of_each_slice, lhs_offset, rhs_offset, depth, r, c,
global_row, global_col, global_row, global_col);
}
for (; r <= dst_block.rows - 4; r += 4) {
const int global_row = r + dst_block.start_row;
UnpackResultBlock<KernelFormat, Int32x4x4>(
src_map, output_pipeline_executor_4x4, dst, lhs_sums_of_each_slice,
rhs_sums_of_each_slice, lhs_offset, rhs_offset, depth, r, c,
global_row, global_col, global_row, global_col);
}
for (; r < dst_block.rows; r++) {
const int global_row = r + dst_block.start_row;
UnpackResultBlock<KernelFormat, Int32x1x4>(
src_map, output_pipeline_executor_1x4, dst, lhs_sums_of_each_slice,
rhs_sums_of_each_slice, lhs_offset, rhs_offset, depth, r, c,
global_row, global_col, global_row, global_col);
}
}
for (; c < dst_block.cols; c++) {
const int global_col = c + dst_block.start_col;
PrefetchResultBlock<8, 1>(src_map, lhs_sums_of_each_slice, 0, c);
int r = 0;
for (; r <= dst_block.rows - 8; r += 8) {
const int global_row = r + dst_block.start_row;
PrefetchResultBlock<8, 1>(src_map, lhs_sums_of_each_slice, r + 8, c);
UnpackResultBlock<KernelFormat, Int32x8x1>(
src_map, output_pipeline_executor_8x1, dst, lhs_sums_of_each_slice,
rhs_sums_of_each_slice, lhs_offset, rhs_offset, depth, r, c,
global_row, global_col, global_row, global_col);
}
for (; r <= dst_block.rows - 4; r += 4) {
const int global_row = r + dst_block.start_row;
UnpackResultBlock<KernelFormat, Int32x4x1>(
src_map, output_pipeline_executor_4x1, dst, lhs_sums_of_each_slice,
rhs_sums_of_each_slice, lhs_offset, rhs_offset, depth, r, c,
global_row, global_col, global_row, global_col);
}
for (; r < dst_block.rows; r++) {
const int global_row = r + dst_block.start_row;
UnpackResultBlock<KernelFormat, Int32x1x1>(
src_map, output_pipeline_executor_1x1, dst, lhs_sums_of_each_slice,
rhs_sums_of_each_slice, lhs_offset, rhs_offset, depth, r, c,
global_row, global_col, global_row, global_col);
}
}
}
} // end namespace gemmlowp
#endif // GEMMLOWP_INTERNAL_UNPACK_H_
|