1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
// Copyright 2016 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <unistd.h>
#ifdef __APPLE__
#include <sys/time.h>
#endif
#include <cstdint>
#include <cstdlib>
#include <ctime>
#include <iomanip>
#include <iostream>
#include <map>
#include <memory>
#include <vector>
#include "multi_thread_transform.h"
#include "transform_kernels.h"
using namespace gemmlowp::meta;
double time() {
#ifdef __APPLE__
timeval t;
gettimeofday(&t, nullptr);
return t.tv_sec + 1e-6 * t.tv_usec;
#else
timespec t;
clock_gettime(CLOCK_REALTIME, &t);
return t.tv_sec + 1e-9 * t.tv_nsec;
#endif
}
#define kernel_size (16)
template <typename Context, typename Params>
void run_benchmark(const std::string& name, int repetitions, int elements,
Context* context, const Params& params) {
std::cout << "Benchmark: " << name << std::endl;
std::cout << "Warmup single." << std::endl;
for (int i = 0; i < 10; ++i) {
Transform1D<Params, kernel_size>(params);
}
std::cout << "Benchmark single." << std::endl;
double start = time();
for (int i = 0; i < repetitions; ++i) {
Transform1D<Params, kernel_size>(params);
}
double wall_time = time() - start;
double ops = static_cast<double>(elements) * repetitions;
std::cout << "Avg: " << (wall_time / repetitions) << std::endl;
std::cout << "Perf: " << static_cast<std::int64_t>(ops / wall_time) << "/s."
<< std::endl;
std::cout << "Warmup single." << std::endl;
for (int i = 0; i < 10; ++i) {
MultiThreadTransform1D<Context, Params, kernel_size>(context, params);
}
std::cout << "Benchmark multi." << std::endl;
start = time();
for (int i = 0; i < repetitions; ++i) {
MultiThreadTransform1D<Context, Params, kernel_size>(context, params);
}
wall_time = time() - start;
ops = static_cast<double>(elements) * repetitions;
std::cout << "Avg: " << (wall_time / repetitions) << std::endl;
std::cout << "Perf: " << static_cast<std::int64_t>(ops / wall_time) << "/s."
<< std::endl;
}
int main() {
const int repetitions = 500;
const int elements = 4 * 1024 * 1024;
std::unique_ptr<std::int32_t[]> int32_array(new std::int32_t[elements]);
std::unique_ptr<std::uint8_t[]> uint8_array(new std::uint8_t[elements]);
std::unique_ptr<float[]> float_array(new float[elements]);
typedef SimpleContext<gemmlowp::WorkersPool> Context;
Context context(4, new gemmlowp::WorkersPool());
typedef Transform1DParams<std::int32_t, std::uint8_t, Requantize> RequantizeParams;
RequantizeParams requantize_params;
requantize_params.input = int32_array.get();
requantize_params.output = uint8_array.get();
requantize_params.kernel.count = elements;
requantize_params.kernel.input_range_min = -100.0f;
requantize_params.kernel.input_range_scale =
200.0f / ((static_cast<std::int64_t>(1) << 32) - 1);
requantize_params.kernel.input_range_offset =
static_cast<float>(std::numeric_limits<std::int32_t>::lowest());
requantize_params.kernel.output_range_min = -200.0f;
requantize_params.kernel.one_over_output_range_scale =
static_cast<float>((static_cast<std::int64_t>(1) << 8) - 1) / 500.0f;
requantize_params.kernel.output_range_offset =
static_cast<float>(std::numeric_limits<std::uint8_t>::lowest());
run_benchmark("Requantize", repetitions, elements, &context,
requantize_params);
typedef Transform1DParams<std::uint8_t, float, Dequantize> DequantizeParams;
DequantizeParams dequantize_params;
dequantize_params.input = uint8_array.get();
dequantize_params.output = float_array.get();
dequantize_params.kernel.count = elements;
dequantize_params.kernel.range_min = -100.0f;
dequantize_params.kernel.range_scale =
static_cast<float>((static_cast<std::int64_t>(1) << 8) - 1) / 200.0f;
dequantize_params.kernel.range_offset =
static_cast<float>(std::numeric_limits<std::uint8_t>::lowest());
run_benchmark("Dequantize", repetitions, elements, &context,
dequantize_params);
typedef Transform1DParams<float, std::uint8_t, Quantize> QuantizeParams;
QuantizeParams quantize_params;
quantize_params.input = float_array.get();
quantize_params.output = uint8_array.get();
quantize_params.kernel.count = elements;
quantize_params.kernel.range_min = -100.0f;
quantize_params.kernel.range_scale =
200.0f / ((static_cast<std::int64_t>(1) << 8) - 1);
quantize_params.kernel.range_offset =
static_cast<float>(std::numeric_limits<std::uint8_t>::lowest());
run_benchmark("Quantize", repetitions, elements, &context, quantize_params);
return 0;
}
|