1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
|
// Copyright 2016 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// test_fixedpoint.cc: unit tests covering the fixedpoint/ directory.
#define GEMMLOWP_ENABLE_FIXEDPOINT_CONSTANTS_CHECKS
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <random>
#include <vector>
#include "../fixedpoint/fixedpoint.h"
#include "test.h"
namespace gemmlowp {
namespace {
template <typename T>
T Load(const typename FixedPointRawTypeTraits<T>::ScalarRawType* src) {
return *src;
}
template <typename T>
void Store(typename FixedPointRawTypeTraits<T>::ScalarRawType* dst, T v) {
*dst = v;
}
#ifdef GEMMLOWP_NEON
template <>
int32x4_t Load<int32x4_t>(const std::int32_t* src) {
return vld1q_s32(src);
}
template <>
int16x8_t Load<int16x8_t>(const std::int16_t* src) {
return vld1q_s16(src);
}
template <>
void Store<int32x4_t>(std::int32_t* dst, int32x4_t v) {
vst1q_s32(dst, v);
}
template <>
void Store<int16x8_t>(std::int16_t* dst, int16x8_t v) {
vst1q_s16(dst, v);
}
#endif
#ifdef GEMMLOWP_SSE4
template <>
__m128i Load<__m128i>(const std::int32_t* src) {
return _mm_loadu_si128(reinterpret_cast<const __m128i*>(src));
}
template <>
void Store<__m128i>(std::int32_t* dst, __m128i v) {
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), v);
}
template <>
int16x8_m128i Load<int16x8_m128i>(const std::int16_t* src) {
return to_int16x8_m128i(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(src)));
}
template <>
void Store<int16x8_m128i>(std::int16_t* dst, int16x8_m128i v) {
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), v.v);
}
#endif
#ifdef GEMMLOWP_MSA
template <>
v4i32 Load<v4i32>(const std::int32_t* src) {
return __builtin_msa_ld_w(const_cast<std::int32_t*>(src), 0);
}
template <>
v8i16 Load<v8i16>(const std::int16_t* src) {
return __builtin_msa_ld_h(const_cast<std::int16_t*>(src), 0);
}
template <>
void Store<v4i32>(std::int32_t* dst, v4i32 v) {
__builtin_msa_st_w(v, dst, 0);
}
template <>
void Store<v8i16>(std::int16_t* dst, v8i16 v) {
__builtin_msa_st_h(v, dst, 0);
}
#endif
#ifdef GEMMLOWP_AVX2
template <>
__m256i Load<__m256i>(const std::int32_t* src) {
return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src));
}
template <>
int16x16_m256i Load<int16x16_m256i>(const std::int16_t* src) {
return to_int16x16_m256i(
_mm256_loadu_si256(reinterpret_cast<const __m256i*>(src)));
}
template <>
void Store<__m256i>(std::int32_t* dst, __m256i v) {
_mm256_storeu_si256(reinterpret_cast<__m256i*>(dst), v);
}
template <>
void Store<int16x16_m256i>(std::int16_t* dst, int16x16_m256i v) {
_mm256_storeu_si256(reinterpret_cast<__m256i*>(dst), v.v);
}
#endif
template <typename tSimdType>
class TestFixedPoint {
public:
using SimdType = tSimdType;
using SimdTypeTraits = FixedPointRawTypeTraits<SimdType>;
using ScalarType = typename SimdTypeTraits::ScalarRawType;
static constexpr int kSimdLanes = SimdTypeTraits::kLanes;
static constexpr int kScalarTypeBits = 8 * sizeof(ScalarType);
// Explanation of UnaryOpBase, its *Op subclasses below, and TestUnaryOp:
// Most (though not all) of the fixedpoint functionality being tested
// consists of functions taking one fixedpoint value and returning one
// fixedpoint value, e.g. "exp" or "tanh". We call them "unary operators".
// We factor a lot of testing boilerplate into a common TestUnaryOp function
// taking a "unary op" object that fully describes the function to be tested.
// These objects inherit UnaryOpBase mostly as a means to share some default
// values for some properties.
//
// An important design element here is that the fixed-point values are passed
// around as raw integers (e.g. int32_t or SIMD types such as int32x4_t), not
// as higher-level FixedPoint objects. The motivation for this design is 1) to
// avoid having to templatize everything in the tIntegerBits parameter of
// class FixedPoint, and 2) to allow directly testing low-level functions
// operating on raw types (e.g. RoundingDivideByPOT) without needlessly
// requiring
// wrapping raw values in FixedPoint objects.
class UnaryOpBase {
public:
// Min bound of the input range of this op. For example, an op only handling
// nonnegative values would return 0.
ScalarType MinInput() const {
return std::numeric_limits<ScalarType>::min();
}
// Max bound of the input range of this op. For example, an op only handling
// nonpositive values would return 0.
ScalarType MaxInput() const {
return std::numeric_limits<ScalarType>::max();
}
// Tolerated difference between actual and reference ScalarType values.
// Note that the corresponding real-numbers tolerance depends on the number
// of integer bits of the fixed-point representation of the results of this
// op.
// For example, for an op returning fixed-point values with 0 integer bits,
// the correspondence between real-number values and raw values is
// real_number = (2^31) * raw_value.
ScalarType Tolerance() const { return 0; }
};
// Op wrapping RoundingDivideByPOT
class RoundingDivideByPOTOp final : public UnaryOpBase {
public:
RoundingDivideByPOTOp(int exponent) : exponent_(exponent) {}
ScalarType ReferenceOp(ScalarType x) const {
const double d = static_cast<double>(x) / (1ll << exponent_);
return static_cast<ScalarType>(std::round(d));
}
template <typename RawType>
RawType Op(RawType x) const {
return RoundingDivideByPOT(x, exponent_);
}
private:
const int exponent_;
};
// Op wrapping SaturatingRoundingMultiplyByPOT
template <int tExponent>
class SaturatingRoundingMultiplyByPOTOp final : public UnaryOpBase {
public:
ScalarType ReferenceOp(ScalarType x) const {
const double d = static_cast<double>(x) * std::pow(2., tExponent);
const double clamp_min = std::numeric_limits<ScalarType>::min();
const double clamp_max = std::numeric_limits<ScalarType>::max();
const double clamped = std::min(clamp_max, std::max(clamp_min, d));
return static_cast<ScalarType>(std::round(clamped));
}
template <typename RawType>
RawType Op(RawType x) const {
return SaturatingRoundingMultiplyByPOT<tExponent>(x);
}
};
// Op wrapping exp_on_interval_between_negative_one_quarter_and_0_excl
class ExpOnIntervalBetweenNegativeOneQuarterAnd0ExclOp final
: public UnaryOpBase {
public:
ScalarType MinInput() const { return -(1 << (kScalarTypeBits - 3)); }
ScalarType MaxInput() const { return 0; }
ScalarType Tolerance() const { return kScalarTypeBits == 32 ? 500 : 1; }
ScalarType ReferenceOp(ScalarType x) const {
using F = FixedPoint<ScalarType, 0>;
const double d = ToDouble(F::FromRaw(x));
const double e = std::exp(d);
return F::FromDouble(e).raw();
}
template <typename RawType>
RawType Op(RawType x) const {
using F = FixedPoint<RawType, 0>;
const F f = F::FromRaw(x);
const F e = exp_on_interval_between_negative_one_quarter_and_0_excl(f);
return e.raw();
}
};
// Op wrapping exp_on_negative_values
template <int tIntegerBits>
class ExpOnNegativeValuesOp final : public UnaryOpBase {
public:
ScalarType MaxInput() const { return 0; }
ScalarType Tolerance() const { return kScalarTypeBits == 32 ? 500 : 2; }
ScalarType ReferenceOp(ScalarType x) const {
using F = FixedPoint<ScalarType, tIntegerBits>;
using F0 = FixedPoint<ScalarType, 0>;
const double d = ToDouble(F::FromRaw(x));
const double e = std::exp(d);
return F0::FromDouble(e).raw();
}
template <typename RawType>
RawType Op(RawType x) const {
using F = FixedPoint<RawType, tIntegerBits>;
const F f = F::FromRaw(x);
return exp_on_negative_values(f).raw();
}
};
// Op wrapping one_minus_x_over_one_plus_x_for_x_in_0_1
class OneMinusXOverOnePlusXForXIn01Op final : public UnaryOpBase {
public:
ScalarType MinInput() const { return 0; }
ScalarType Tolerance() const { return kScalarTypeBits == 32 ? 12 : 11; }
ScalarType ReferenceOp(ScalarType x) const {
using F = FixedPoint<ScalarType, 0>;
const double d = ToDouble(F::FromRaw(x));
const double e = (1 - d) / (1 + d);
return F::FromDouble(e).raw();
}
template <typename RawType>
RawType Op(RawType x) const {
using F = FixedPoint<RawType, 0>;
const F f = F::FromRaw(x);
return one_minus_x_over_one_plus_x_for_x_in_0_1(f).raw();
}
};
// Op wrapping tanh
template <int tIntegerBits>
class TanhOp final : public UnaryOpBase {
public:
ScalarType Tolerance() const { return kScalarTypeBits == 32 ? 310 : 12; }
ScalarType ReferenceOp(ScalarType x) const {
using F = FixedPoint<ScalarType, tIntegerBits>;
using F0 = FixedPoint<ScalarType, 0>;
const double d = ToDouble(F::FromRaw(x));
const double e = std::tanh(d);
return F0::FromDouble(e).raw();
}
template <typename RawType>
RawType Op(RawType x) const {
using F = FixedPoint<RawType, tIntegerBits>;
const F f = F::FromRaw(x);
return tanh(f).raw();
}
};
// Op wrapping one_over_one_plus_x_for_x_in_0_1
class OneOverOnePlusXForXIn01Op final : public UnaryOpBase {
public:
ScalarType MinInput() const { return 0; }
ScalarType Tolerance() const { return kScalarTypeBits == 32 ? 6 : 5; }
ScalarType ReferenceOp(ScalarType x) const {
using F = FixedPoint<ScalarType, 0>;
const double d = ToDouble(F::FromRaw(x));
const double e = 1 / (1 + d);
return F::FromDouble(e).raw();
}
template <typename RawType>
RawType Op(RawType x) const {
using F = FixedPoint<RawType, 0>;
const F f = F::FromRaw(x);
return one_over_one_plus_x_for_x_in_0_1(f).raw();
}
};
// Op wrapping logistic
template <int tIntegerBits>
class LogisticOp final : public UnaryOpBase {
public:
ScalarType Tolerance() const { return kScalarTypeBits == 32 ? 155 : 6; }
ScalarType ReferenceOp(ScalarType x) const {
using F = FixedPoint<ScalarType, tIntegerBits>;
using F0 = FixedPoint<ScalarType, 0>;
const double d = ToDouble(F::FromRaw(x));
const double e = 1 / (1 + std::exp(-d));
return F0::FromDouble(e).raw();
}
template <typename RawType>
RawType Op(RawType x) const {
using F = FixedPoint<RawType, tIntegerBits>;
const F f = F::FromRaw(x);
return logistic(f).raw();
}
};
// Tests a given op, on a given list of int32 input values.
template <typename tUnaryOpType>
void TestUnaryOp(const tUnaryOpType& unary_op,
const std::vector<ScalarType>& testvals) {
Check(0 == (testvals.size() % kSimdLanes));
for (std::size_t i = 0; i < testvals.size(); i += kSimdLanes) {
// First, clamp input values accoding to the MinInput() and MaxInput()
// bounds returned by the op.
ScalarType input[kSimdLanes] = {0};
for (std::size_t j = 0; j < kSimdLanes; j++) {
const ScalarType raw_input = testvals[i + j];
input[j] = std::min(unary_op.MaxInput(),
std::max(unary_op.MinInput(), raw_input));
}
// Compute reference results and check that the actual results on
// scalar inputs agree with them, to the Tolerance() returned by the op.
ScalarType reference[kSimdLanes] = {0};
ScalarType actual_scalar[kSimdLanes] = {0};
for (std::size_t j = 0; j < kSimdLanes; j++) {
reference[j] = unary_op.ReferenceOp(input[j]);
actual_scalar[j] = unary_op.Op(input[j]);
const std::int64_t diff = static_cast<std::int64_t>(actual_scalar[j]) -
static_cast<std::int64_t>(reference[j]);
if (std::abs(diff) > unary_op.Tolerance()) {
fprintf(stderr, "abs(diff) (%" PRId64 ") > tolerance (%d)\n", diff,
unary_op.Tolerance());
}
Check(std::abs(diff) <= unary_op.Tolerance());
}
// Check that the actual results on SIMD inputs agree *exactly* with the
// actual results on scalar inputs. I.e. SIMD must make absolutely no
// difference
// to the results, regardless of the fact that both scalar and SIMD
// results may differ from the reference results.
ScalarType actual_simd[kSimdLanes] = {0};
Store<SimdType>(actual_simd, unary_op.Op(Load<SimdType>(input)));
for (std::size_t j = 0; j < kSimdLanes; j++) {
if (actual_simd[j] != actual_scalar[j]) {
fprintf(stderr, "SIMD (%d) != scalar (%d)\n", actual_simd[j],
actual_scalar[j]);
}
Check(actual_simd[j] == actual_scalar[j]);
}
}
}
template <int tIntegerBits>
void test_convert(FixedPoint<ScalarType, tIntegerBits> x) {
typedef FixedPoint<ScalarType, tIntegerBits> F;
F y = F::FromDouble(ToDouble(x));
Check(y == x);
}
template <int tIntegerBits_a, int tIntegerBits_b>
void test_Rescale(FixedPoint<ScalarType, tIntegerBits_a> a) {
FixedPoint<ScalarType, tIntegerBits_b> actual = Rescale<tIntegerBits_b>(a);
FixedPoint<ScalarType, tIntegerBits_b> expected =
FixedPoint<ScalarType, tIntegerBits_b>::FromDouble(ToDouble(a));
Check(actual == expected);
}
template <int tIntegerBits_a, int tIntegerBits_b>
void test_Rescale(const std::vector<ScalarType>& testvals) {
for (auto a : testvals) {
FixedPoint<ScalarType, tIntegerBits_a> aq;
aq.raw() = a;
test_Rescale<tIntegerBits_a, tIntegerBits_b>(aq);
}
}
template <int tIntegerBits_a, int tIntegerBits_b>
void test_mul(FixedPoint<ScalarType, tIntegerBits_a> a,
FixedPoint<ScalarType, tIntegerBits_b> b) {
static const int ProductIntegerBits = tIntegerBits_a + tIntegerBits_b;
using ProductFixedPoint = FixedPoint<ScalarType, ProductIntegerBits>;
ProductFixedPoint ab;
ab = a * b;
double a_double = ToDouble(a);
double b_double = ToDouble(b);
double ab_double = a_double * b_double;
ProductFixedPoint expected = ProductFixedPoint::FromDouble(ab_double);
std::int64_t diff = std::int64_t(ab.raw()) - std::int64_t(expected.raw());
Check(std::abs(diff) <= 1);
}
template <int tIntegerBits_a, int tIntegerBits_b>
void test_mul(const std::vector<ScalarType>& testvals) {
for (auto a : testvals) {
for (auto b : testvals) {
FixedPoint<ScalarType, tIntegerBits_a> aq;
FixedPoint<ScalarType, tIntegerBits_b> bq;
aq.raw() = a;
bq.raw() = b;
test_mul(aq, bq);
}
}
}
template <int tExponent, int tIntegerBits_a>
void test_ExactMulByPot(FixedPoint<ScalarType, tIntegerBits_a> a) {
double x = ToDouble(a) * std::pow(2.0, tExponent);
double y = ToDouble(ExactMulByPot<tExponent>(a));
Check(x == y);
}
template <int tExponent, int tIntegerBits_a>
void test_ExactMulByPot(const std::vector<ScalarType>& testvals) {
for (auto a : testvals) {
FixedPoint<ScalarType, tIntegerBits_a> aq;
aq.raw() = a;
test_ExactMulByPot<tExponent, tIntegerBits_a>(aq);
}
}
// Make the list of test values to test each op against.
std::vector<ScalarType> MakeTestVals() {
std::vector<ScalarType> testvals;
for (int i = 0; i < kScalarTypeBits - 1; i++) {
testvals.push_back((1 << i) - 2);
testvals.push_back((1 << i) - 1);
testvals.push_back((1 << i));
testvals.push_back((1 << i) + 1);
testvals.push_back((1 << i) + 2);
testvals.push_back(-(1 << i) - 2);
testvals.push_back(-(1 << i) - 1);
testvals.push_back(-(1 << i));
testvals.push_back(-(1 << i) + 1);
testvals.push_back(-(1 << i) + 2);
}
testvals.push_back(std::numeric_limits<ScalarType>::min());
testvals.push_back(std::numeric_limits<ScalarType>::min() + 1);
testvals.push_back(std::numeric_limits<ScalarType>::min() + 2);
testvals.push_back(std::numeric_limits<ScalarType>::max() - 2);
testvals.push_back(std::numeric_limits<ScalarType>::max() - 1);
testvals.push_back(std::numeric_limits<ScalarType>::max());
std::mt19937 random_engine;
std::uniform_int_distribution<ScalarType> uniform_distribution(
std::numeric_limits<ScalarType>::min(),
std::numeric_limits<ScalarType>::max());
for (int i = 0; i < 1000; i++) {
testvals.push_back(uniform_distribution(random_engine));
}
// SIMD tests will require the length of testvals to be a multiple
// of SIMD vector size.
while (testvals.size() % kSimdLanes) {
testvals.push_back(0);
}
std::sort(testvals.begin(), testvals.end());
return testvals;
}
void RunTests(const char* msg) {
const std::vector<ScalarType> testvals = MakeTestVals();
for (int s = 0; s < kScalarTypeBits; s++) {
TestUnaryOp(RoundingDivideByPOTOp(s), testvals);
}
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<1 - kScalarTypeBits>(),
testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<2 - kScalarTypeBits>(),
testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<3 - kScalarTypeBits>(),
testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<14 - kScalarTypeBits>(),
testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<15 - kScalarTypeBits>(),
testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<-15>(), testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<-4>(), testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<-3>(), testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<-2>(), testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<-1>(), testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<0>(), testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<1>(), testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<2>(), testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<3>(), testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<4>(), testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<15>(), testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<kScalarTypeBits - 15>(),
testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<kScalarTypeBits - 14>(),
testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<kScalarTypeBits - 3>(),
testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<kScalarTypeBits - 2>(),
testvals);
TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<kScalarTypeBits - 1>(),
testvals);
TestUnaryOp(ExpOnIntervalBetweenNegativeOneQuarterAnd0ExclOp(), testvals);
TestUnaryOp(ExpOnNegativeValuesOp<0>(), testvals);
TestUnaryOp(ExpOnNegativeValuesOp<1>(), testvals);
TestUnaryOp(ExpOnNegativeValuesOp<2>(), testvals);
TestUnaryOp(ExpOnNegativeValuesOp<3>(), testvals);
TestUnaryOp(ExpOnNegativeValuesOp<4>(), testvals);
TestUnaryOp(ExpOnNegativeValuesOp<5>(), testvals);
TestUnaryOp(ExpOnNegativeValuesOp<6>(), testvals);
TestUnaryOp(OneMinusXOverOnePlusXForXIn01Op(), testvals);
TestUnaryOp(TanhOp<0>(), testvals);
TestUnaryOp(TanhOp<1>(), testvals);
TestUnaryOp(TanhOp<2>(), testvals);
TestUnaryOp(TanhOp<3>(), testvals);
TestUnaryOp(TanhOp<4>(), testvals);
TestUnaryOp(TanhOp<5>(), testvals);
TestUnaryOp(TanhOp<6>(), testvals);
TestUnaryOp(OneOverOnePlusXForXIn01Op(), testvals);
TestUnaryOp(LogisticOp<0>(), testvals);
TestUnaryOp(LogisticOp<1>(), testvals);
TestUnaryOp(LogisticOp<2>(), testvals);
TestUnaryOp(LogisticOp<3>(), testvals);
TestUnaryOp(LogisticOp<4>(), testvals);
TestUnaryOp(LogisticOp<5>(), testvals);
TestUnaryOp(LogisticOp<6>(), testvals);
for (auto a : testvals) {
FixedPoint<ScalarType, 4> x;
x.raw() = a;
test_convert(x);
}
test_mul<0, 0>(testvals);
test_mul<0, 1>(testvals);
test_mul<2, 0>(testvals);
test_mul<1, 1>(testvals);
test_mul<4, 4>(testvals);
test_mul<3, 5>(testvals);
test_mul<7, 2>(testvals);
test_mul<kScalarTypeBits / 2 - 1, kScalarTypeBits / 2 - 2>(testvals);
test_Rescale<0, 0>(testvals);
test_Rescale<0, 1>(testvals);
test_Rescale<2, 0>(testvals);
test_Rescale<4, 4>(testvals);
test_Rescale<4, 5>(testvals);
test_Rescale<6, 3>(testvals);
test_Rescale<13, 9>(testvals);
test_ExactMulByPot<0, 0>(testvals);
test_ExactMulByPot<0, 4>(testvals);
test_ExactMulByPot<1, 4>(testvals);
test_ExactMulByPot<3, 2>(testvals);
test_ExactMulByPot<-4, 5>(testvals);
test_ExactMulByPot<-2, 6>(testvals);
fprintf(stderr, "PASS (%s)\n", msg);
}
};
} // end anonymous namespace
} // end namespace gemmlowp
int main() {
gemmlowp::TestFixedPoint<std::int32_t>().RunTests("Scalar int32");
gemmlowp::TestFixedPoint<std::int16_t>().RunTests("Scalar int16");
#ifdef GEMMLOWP_SSE4
gemmlowp::TestFixedPoint<__m128i>().RunTests("SSE4 __m128i = int32x4");
gemmlowp::TestFixedPoint<gemmlowp::int16x8_m128i>().RunTests(
"SSE4 __m128i = int16x8");
#endif
#ifdef GEMMLOWP_NEON
gemmlowp::TestFixedPoint<int32x4_t>().RunTests("NEON int32x4_t");
gemmlowp::TestFixedPoint<int16x8_t>().RunTests("NEON int16x8_t");
#endif
#ifdef GEMMLOWP_MSA
gemmlowp::TestFixedPoint<v4i32>().RunTests("MSA v4i32");
gemmlowp::TestFixedPoint<v8i16>().RunTests("MSA v8i16");
#endif
#ifdef GEMMLOWP_AVX2
gemmlowp::TestFixedPoint<__m256i>().RunTests("AVX __m256i");
gemmlowp::TestFixedPoint<gemmlowp::int16x16_m256i>().RunTests(
"AVX2 __m256i = int16x16");
#endif
}
|