File: hhchan.g

package info (click to toggle)
genesis 2.1-1.1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 14,288 kB
  • ctags: 10,667
  • sloc: ansic: 111,959; makefile: 2,240; yacc: 1,797; lex: 976; csh: 54; sh: 13
file content (151 lines) | stat: -rw-r--r-- 4,823 bytes parent folder | download | duplicates (20)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
//genesis 2.0
// This is the old-style "prototypes" version, with 2.0 syntax

/* FILE INFORMATION
** hh_channel implementation of squid giant axon voltage-dependent
** channels, according to :
** A.L.Hodgkin and A.F.Huxley, J.Physiol(Lond) 117, pp 500-544 (1952)
**
** This file depends on functions and constants defined in library.g
*/

// CONSTANTS
float EREST_ACT = -0.060 /* granule cell resting potl */
float ENA = 0.045
float EK = -0.090
float SOMA_A = 1e-9		/* Square meters */

int EXPONENTIAL =   1
int SIGMOID     =   2
int LINOID      =   3

/******************************************************************************
Some conventions in using the HH_CHANNELS and the VDEP_GATES

HH_CONVENTIONS
==============
Activation state variable is called x for all channels
Inactivation state variable is called y for all channels
In the traditional hh notations: x=m, y=h for Na channel; x=n for K_channel

There are three functional forms for alpha and beta for each state variable:
FORM 1: alpha(v) = A exp((v-V0)/B)                  (EXPONENTIAL)
FORM 2: alpha(v) = A / (exp((v-V0)/B) + 1)          (SIGMOID)
FORM 3: alpha(v) = A (v-V0) / (exp((v-V0)/B) - 1)   (LINOID)
The same functional forms are used for beta.
In the simulator, the FORM, A, B and V0 are designated by:
X_alpha_FORM, X_alpha_A, X_alpha_B, X_alpha_V0  alpha function for state var x
X_beta_FORM,  X_beta_A,  X_beta_B,  X_beta_V0   beta  function for state var x
Y_alpha_FORM, Y_alpha_A, Y_alpha_B, Y_alpha_V0  alpha function for state var y
Y_beta_FORM,  Y_beta_A,  Y_beta_B,  Y_beta_V0   beta  function for state var y

The conductance is calculated as g = Gbar*x^Xpower * y^Ypower
For a squid axon Na channel: Xpower = 3, Ypower = 1 (m^3 h)
                 K  channel: Xpower = 4, Ypower = 0 (n^4)

These are linked to the soma by two messages :
addmsg /soma/hh_channel /soma CHANNEL Gk Ek
addmsg /soma /soma/hh_channel VOLTAGE Vm

----------------------------------------------------------------------

For the VDEP Gates, the form of each gate is
alpha = (A+B*V)/(C+exp((V+D)/F))
This is related to the above forms as follows :
EXPONENTIAL :
gate variables		Value of gate variable in terms of hh-channel variables
A			A
B			0
C			0
D			-V0
F			-B

SIGMOID :
Gate			in terms of hh-ch variables
A			A
B			0
C			1
D			-V0
F			B

LINOID :
A			-A * V0
B			A
C			-1
D			-V0
F			B


These are linked to the soma and the channel proper as follows :
addmsg /soma/channel /soma CHANNEL Gk Ek
addmsg /soma /soma/channel VOLTAGE Vm

addmsg /soma/channel/m /soma/channel {gate_type} m {Power}
(eg, addmsg Na_mitral/m      Na_mitral MULTGATE    m 3

addmsg /soma /soma/channel/gate EREST Vm

******************************************************************************/
//========================================================================
//  Original Hodgkin-Huxley squid parameters, implemented as hh_channel elements
//========================================================================

//========================================================================
//                        ACTIVE SQUID NA CHANNEL 
//      A.L.Hodgkin and A.F.Huxley, J.Physiol(Lond) 117, pp 500-544 (1952)
//========================================================================
function make_Na_squid_hh
	if ({exists Na_squid_hh})
		return
	end
	
	create		hh_channel	Na_squid_hh
	setfield Na_squid_hh \
		Ek 		{ENA} \			// V
		Gbar		{ 1.2e3 * SOMA_A } \		// S
		Xpower		3.0 \
		Ypower		1.0 \   
		X_alpha_FORM	{LINOID} \
		X_alpha_A	-0.1e6 \			// 1/V-sec
		X_alpha_B	-0.010 \			// V
		X_alpha_V0	{ 0.025 + EREST_ACT } \		// V
		X_beta_FORM	{EXPONENTIAL} \
		X_beta_A	4.0e3 \				// 1/sec
		X_beta_B	-18.0e-3 \			// V
		X_beta_V0	{ 0.0 + EREST_ACT } \		// V
		Y_alpha_FORM	{EXPONENTIAL} \
		Y_alpha_A	70.0 \				// 1/sec
		Y_alpha_B	-20.0e-3 \			// V
		Y_alpha_V0	{ 0.0 + EREST_ACT } \		// V
		Y_beta_FORM	{SIGMOID} \
		Y_beta_A	1.0e3 \				// 1/sec
		Y_beta_B	-10.0e-3 \			// V
		Y_beta_V0	{ 30.0e-3 + EREST_ACT }		// V
end

//========================================================================
//                        ACTIVE K CHANNEL - SQUID
//      A.L.Hodgkin and A.F.Huxley, J.Physiol(Lond) 117, pp 500-544 (1952)
//========================================================================
function make_K_squid_hh
	if ({exists K_squid_hh})
		return
	end
	
	create		hh_channel	K_squid_hh
    	setfield K_squid_hh \
		Ek 		{EK} \				// V
		Gbar		{360.0*SOMA_A} \		// S
		Xpower		4.0 \
		Ypower		0.0 \   
		X_alpha_FORM	{LINOID} \
		X_alpha_A	-10.0e3 \			// 1/V-sec
		X_alpha_B	-10.0e-3 \			// V
		X_alpha_V0	{10.0e-3+EREST_ACT} \		// V
		X_beta_FORM	{EXPONENTIAL} \
		X_beta_A	125.0 \				// 1/sec
		X_beta_B	-80.0e-3 \			// V
		X_beta_V0	{0.0+EREST_ACT}  		// V
end

//========================================================================