1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
|
// genesis
/* FILE INFORMATION - last update: Aug 17, 1993
** Molluscan Voltage dependent Na, K, KA, Ca, slow Na/Ca channels
** The channels given below are representative of those found in
** molluscan soma described in the review paper by
** David J. Adams, Stephen J. Smith and Stuart H. Thompson
** (Ann. Rev. Neurosci. 3, p.141 (1980)) and in other references below.
** Implemented by David Beeman - January 1991
** Converted to tabchans by Upinder S. Bhalla - Feb 1991
** Further additions and corrections by D. Beeman - Oct 92, Jan 93, Aug 93
** Converted to GENESIS 2 - March 1995
** All parameters are in SI (MKSA) units.
** The nominal resting membrane potential is -0.040 V.
**
**
** Typical equilibrium potentials taken from these references are:
** ENa = 0.050
** EK = -0.060
** EA = -0.063
** ECa = 0.064
** EB = 0.068 // +/- 0.059 V uncertainty!
**
** This file depends on functions and constants defined in defaults.g
*/
// CONSTANTS
float ENa = 0.050
float EK = -0.060
float EA = -0.063
float ECa = 0.064
float EB = 0.068 // +/- 0.059 V uncertainty!
float SOMA_A = 2e-7 // sq m
/***********************************************************************
Na-Current
Adams and Gage, J. Physiol. 289, p. 143 (1979) (Aplysia R15)
***********************************************************************/
/* The activation curve (X gate) has been shifted down by -5 mV to make it
more like the Connor and Stevens I-current and provide more robust firing
when used with the Late potassium K-Current in this file. In order to
restore it to the curve measured by Adams and Gage, add the command
"scale_tabchan Na_aplysia_ag X minf 1.0 1.0 0.005 0.0" to the end of this
function.
*/
function make_Na_aplysia_ag // Na-current
str chanpath = "Na_aplysia_ag"
if ({exists {chanpath}})
return
end
create tabchannel {chanpath}
setfield {chanpath} \
Ek {ENa} \
Gbar {137.5 * SOMA_A} \
Ik 0 \
Gk 0 \
Xpower 3 \
Ypower 1 \
Zpower 0
call {chanpath} TABCREATE X 30 -0.100 0.050
setfield {chanpath} \ // A = tau_m, B = m_inf
X_A->table[0] 0.0122 X_B->table[0] 0.0 \ // -0.1
X_A->table[1] 0.0122 X_B->table[1] 0.0 \
X_A->table[2] 0.0122 X_B->table[2] 0.0 \ // -0.09
X_A->table[3] 0.0122 X_B->table[3] 0.0 \
X_A->table[4] 0.0122 X_B->table[4] 0.0 \ // -0.08
X_A->table[5] 0.0122 X_B->table[5] 0.0 \
X_A->table[6] 0.0122 X_B->table[6] 0.0 \ // -0.07
X_A->table[7] 0.0122 X_B->table[7] 0.0 \
X_A->table[8] 0.0122 X_B->table[8] 0.0 \ // -0.06
X_A->table[9] 0.0122 X_B->table[9] 0.0 \
X_A->table[10] 0.0122 X_B->table[10] 0.0 \ // -0.05
X_A->table[11] 0.0122 X_B->table[11] 0.0 \
X_A->table[12] 0.0122 X_B->table[12] 0.0 \ // -0.04
X_A->table[13] 0.0122 X_B->table[13] 0.0494 \
X_A->table[14] 0.0116 X_B->table[14] 0.2414 \ // -0.030
X_A->table[15] 0.00938 X_B->table[15] 0.4077 \
X_A->table[16] 0.00762 X_B->table[16] 0.5817 \ // -0.020
X_A->table[17] 0.00586 X_B->table[17] 0.7768 \
X_A->table[18] 0.00376 X_B->table[18] 0.9069 \ // -0.010
X_A->table[19] 0.00228 X_B->table[19] 0.9626 \
X_A->table[20] 0.00158 X_B->table[20] 0.9843 \ // 0.00
X_A->table[21] 0.00122 X_B->table[21] 0.9940 \
X_A->table[22] 0.00097 X_B->table[22] 0.9992 \ // 0.010
X_A->table[23] 0.00078 X_B->table[23] 1.0000 \
X_A->table[24] 0.00067 X_B->table[24] 1.0000 \ // 0.020
X_A->table[25] 0.00054 X_B->table[25] 1.0000 \
X_A->table[26] 0.00050 X_B->table[26] 1.0000 \ // 0.030
X_A->table[27] 0.00048 X_B->table[27] 1.0000 \
X_A->table[28] 0.00047 X_B->table[28] 1.0000 \ // 0.040
X_A->table[29] 0.00047 X_B->table[29] 1.0000 \
X_A->table[30] 0.00047 X_B->table[30] 1.0000 // 0.050
/* Setting the calc_mode to NO_INTERP for speed */
setfield {chanpath} X_A->calc_mode 0 X_B->calc_mode 0
/* tweaking the tables for the tabchan calculation */
tweaktau {chanpath} X
/* Filling the tables using B-SPLINE interpolation */
call {chanpath} TABFILL X 3000 0
call {chanpath} TABCREATE Y 30 -0.100 0.050
setfield {chanpath} \ // A = tau_h, B = h_inf
Y_A->table[0] 0.065 Y_B->table[0] 1.0 \ // -0.1
Y_A->table[1] 0.065 Y_B->table[1] 1.0 \
Y_A->table[2] 0.065 Y_B->table[2] 1.0 \ // -0.09
Y_A->table[3] 0.065 Y_B->table[3] 1.0 \
Y_A->table[4] 0.065 Y_B->table[4] 1.0 \ // -0.08
Y_A->table[5] 0.065 Y_B->table[5] 1.0 \
Y_A->table[6] 0.065 Y_B->table[6] 1.0 \ // -0.07
Y_A->table[7] 0.065 Y_B->table[7] 1.0 \
Y_A->table[8] 0.065 Y_B->table[8] 1.0 \ // -0.06
Y_A->table[9] 0.065 Y_B->table[9] 1.0 \
Y_A->table[10] 0.065 Y_B->table[10] 0.998 \ // -0.05
Y_A->table[11] 0.0575 Y_B->table[11] 0.987 \
Y_A->table[12] 0.050 Y_B->table[12] 0.935 \ // -0.04
Y_A->table[13] 0.044 Y_B->table[13] 0.731 \
Y_A->table[14] 0.038 Y_B->table[14] 0.339 \ // -0.030
Y_A->table[15] 0.032 Y_B->table[15] 0.0884 \
Y_A->table[16] 0.027 Y_B->table[16] 0.0180 \ // -0.020
Y_A->table[17] 0.0232 Y_B->table[17] 0.0034 \
Y_A->table[18] 0.0209 Y_B->table[18] 0.0 \ // -0.010
Y_A->table[19] 0.0185 Y_B->table[19] 0.0 \
Y_A->table[20] 0.0168 Y_B->table[20] 0.0 \ // 0.00
Y_A->table[21] 0.0153 Y_B->table[21] 0.0 \
Y_A->table[22] 0.0135 Y_B->table[22] 0.0 \ // 0.010
Y_A->table[23] 0.0129 Y_B->table[23] 0.0 \
Y_A->table[24] 0.0118 Y_B->table[24] 0.0 \ // 0.020
Y_A->table[25] 0.0111 Y_B->table[25] 0.0 \
Y_A->table[26] 0.0103 Y_B->table[26] 0.0 \ // 0.030
Y_A->table[27] 0.0100 Y_B->table[27] 0.0 \
Y_A->table[28] 0.0096 Y_B->table[28] 0.0 \ // 0.040
Y_A->table[29] 0.0094 Y_B->table[29] 0.0 \
Y_A->table[30] 0.0088 Y_B->table[30] 0.0 // 0.050
/* Setting the calc_mode to NO_INTERP for speed */
setfield {chanpath} Y_A->calc_mode 0 Y_B->calc_mode 0
/* tweaking the tables for the tabchan calculation */
tweaktau {chanpath} Y
/* Filling the tables using B-SPLINE interpolation */
call {chanpath} TABFILL Y 3000 0
end
/**********************************************************************
** Late potassium K-Current
** K current activation from Thompson, J. Physiol 265: 465 (1977)
** (Tritonia (LPl 2 and LPl 3 cells)
** Inactivation from RW Aldrich, PA Getting, and SH Thompson,
** J. Physiol, 291: 507 (1979) (Anisidoris and Archidoris)
**
**********************************************************************/
function make_K_trit_agt // K-current
str chanpath = "K_trit_agt"
if ({exists {chanpath}})
return
end
create tabchannel {chanpath}
setfield {chanpath} \
Ek {EK} \
Gbar {65.7 * SOMA_A} \
Ik 0 \
Gk 0 \
Xpower 2 \
Ypower 1 \
Zpower 0
call {chanpath} TABCREATE X 30 -0.100 0.050
settab2const {chanpath} X_A 0 12 0.0 //-0.1 thru -0.045=>0.0
setfield {chanpath} \
X_A->table[13] 0.00 \
X_A->table[14] 2.87 \ // -0.030
X_A->table[15] 4.68 \
X_A->table[16] 7.46 \ // -0.020
X_A->table[17] 10.07 \
X_A->table[18] 14.27 \ // -0.010
X_A->table[19] 17.87 \
X_A->table[20] 22.9 \ // 0.0
X_A->table[21] 33.6 \
X_A->table[22] 49.3 \ // 0.010
X_A->table[23] 65.6 \
X_A->table[24] 82.0 \ // 0.020
X_A->table[25] 110.0 \
X_A->table[26] 147.1 \ // 0.030
X_A->table[27] 147.1 \
X_A->table[28] 147.1 \ // 0.040
X_A->table[29] 147.1 \
X_A->table[30] 147.1 // 0.050
settab2const {chanpath} X_B 0 11 16.6 //-0.1 thru -0.045=>16.6
setfield {chanpath} \
X_B->table[12] 16.6 \ // -0.040 Volts
X_B->table[13] 15.4 \
X_B->table[14] 13.5 \ // -0.030
X_B->table[15] 13.2 \
X_B->table[16] 11.9 \ // -0.020
X_B->table[17] 11.5 \
X_B->table[18] 10.75 \ // -0.010
X_B->table[19] 9.30 \
X_B->table[20] 8.30 \ // 0.00
X_B->table[21] 6.00 \
X_B->table[22] 5.10 \ // 0.010
X_B->table[23] 4.80 \
X_B->table[24] 3.20 \ // 0.020
X_B->table[25] 1.60 \
X_B->table[26] 0.00 \ // 0.030
X_B->table[27] 0.00 \
X_B->table[28] 0.00 \ // 0.040
X_B->table[29] 0.00 \
X_B->table[30] 0.00 // 0.050
/* Setting the calc_mode to NO_INTERP for speed */
setfield {chanpath} X_A->calc_mode 0 X_B->calc_mode 0
/* tweaking the tables for the tabchan calculation */
tweakalpha {chanpath} X
/* Filling the tables using B-SPLINE interpolation */
call {chanpath} TABFILL X 3000 0
/* The alpha and beta values used here for the inactivation correspond to
a constant value of tau_h = 1 sec. This is a simplification of the
AG&T results. The "burster" tutorial sets Ypower to 0 (no inactivation).
*/
call {chanpath} TABCREATE Y 30 -0.100 0.050
settab2const {chanpath} Y_A 0 11 1.0 //-0.1 thru -0.035 => 1.0
setfield {chanpath} \
Y_A->table[12] 1.00 \ // -0.040 Volts
Y_A->table[13] 0.97 \ //
Y_A->table[14] 0.94 \ // -0.030 Volts
Y_A->table[15] 0.88 \
Y_A->table[16] 0.75 \ // -0.020
Y_A->table[17] 0.61 \
Y_A->table[18] 0.43 \ // -0.010
Y_A->table[19] 0.305 \
Y_A->table[20] 0.220 \ // 0.00
Y_A->table[21] 0.175 \
Y_A->table[22] 0.155 \ // 0.010
Y_A->table[23] 0.143 \
Y_A->table[24] 0.138 \ // 0.020
Y_A->table[25] 0.137 \
Y_A->table[26] 0.136 \ // 0.030
Y_A->table[27] 0.135 \
Y_A->table[28] 0.135 \ // 0.040
Y_A->table[29] 0.135 \
Y_A->table[30] 0.135 // 0.050
settab2const {chanpath} Y_B 0 11 0.0 //-0.1 thru -0.045 => 0.0
setfield {chanpath} \
Y_B->table[12] 0.0 \ // -0.040 Volts
Y_B->table[13] 0.03 \ //
Y_B->table[14] 0.06 \ // -0.030 Volts
Y_B->table[15] 0.12 \
Y_B->table[16] 0.25 \ // -0.020
Y_B->table[17] 0.39 \
Y_B->table[18] 0.57 \ // -0.010
Y_B->table[19] 0.695 \
Y_B->table[20] 0.78 \ // 0.00
Y_B->table[21] 0.825 \
Y_B->table[22] 0.845 \ // 0.010
Y_B->table[23] 0.857 \
Y_B->table[24] 0.862 \ // 0.020
Y_B->table[25] 0.863 \
Y_B->table[26] 0.864 \ // 0.030
Y_B->table[27] 0.865 \
Y_B->table[28] 0.865 \ // 0.040
Y_B->table[29] 0.865 \
Y_B->table[30] 0.865 // 0.050
/* Setting the calc_mode to NO_INTERP for speed */
setfield {chanpath} Y_A->calc_mode 0 Y_B->calc_mode 0
/* tweaking the tables for the tabchan calculation */
tweakalpha {chanpath} Y
/* Filling the tables using B-SPLINE interpolation */
call {chanpath} TABFILL Y 3000 0
end
/**********************************************************************
** Transient potassium A-Current
** J. A. Connor and C. F. Stevens, J. Physiol. (1971) 213, p. 31
** data for Anisidoris gastropod neurons
**********************************************************************/
function make_KA_moll_cs // A-current
str chanpath = "A_moll_cs"
if ({exists {chanpath}})
return
end
create tabchannel {chanpath}
setfield {chanpath} \
Ek {EA} \
Gbar {65.7 * SOMA_A} \
Ik 0 \
Gk 0 \
Xpower 4 \
Ypower 1 \
Zpower 0
call {chanpath} TABCREATE X 30 -0.100 0.050
settab2const {chanpath} X_A 0 7 0.0 //-0.1 thru -0.065 => 0.0
setfield {chanpath} \
X_A->table[8] 0.1 \ // -0.060 Volts
X_A->table[9] 20.8 \
X_A->table[10] 38.4 \ // -0.050
X_A->table[11] 47.2 \
X_A->table[12] 54.3 \ // -0.040
X_A->table[13] 60.8 \
X_A->table[14] 65.7 \ // -0.030
X_A->table[15] 71.0 \
X_A->table[16] 74.8 \ // -0.020
X_A->table[17] 78.0 \ // a guess!
X_A->table[18] 80.0 \ // -0.010
X_A->table[19] 83.0
settab2const {chanpath} X_A 20 30 83.3 //0 thru 50 => 83.3
settab2const {chanpath} X_B 0 7 83.3 //-0.1 thru -0.065 => 83.3
setfield {chanpath} \
X_B->table[8] 83.3 \ // -0.060 Volts
X_B->table[9] 62.6 \
X_B->table[10] 44.9 \ // -0.050
X_B->table[11] 36.2 \
X_B->table[12] 29.1 \ // -0.040
X_B->table[13] 22.6 \
X_B->table[14] 17.7 \ // -0.030
X_B->table[15] 12.3 \
X_B->table[16] 8.5 \ // -0.020
X_B->table[17] 5.0 \ // a guess!
X_B->table[18] 3.1 \ // -0.010
X_B->table[19] 1.2
settab2const {chanpath} X_B 20 30 0.0 //0 thru 0.050 => 0.0
/* Setting the calc_mode to NO_INTERP for speed */
setfield {chanpath} X_A->calc_mode 0 X_B->calc_mode 0
/* tweaking the tables for the tabchan calculation */
tweakalpha {chanpath} X
/* Filling the tables using B-SPLINE interpolation */
call {chanpath} TABFILL X 3000 0
call {chanpath} TABCREATE Y 30 -0.100 0.050
setfield {chanpath} \
Y_A->table[0] 4.26 \ // -0.100 Volts
Y_A->table[1] 4.12 \
Y_A->table[2] 3.95 \ // -0.090
Y_A->table[3] 3.69 \
Y_A->table[4] 3.34 \ // -0.080
Y_A->table[5] 2.94 \
Y_A->table[6] 2.32 \ // -0.070
Y_A->table[7] 1.54 \
Y_A->table[8] 0.66 \ // -0.060
Y_A->table[9] 0.306 \
Y_A->table[10] 0.123 \ // -0.050
Y_A->table[11] 0.053
settab2const {chanpath} Y_A 12 30 0.0 // -0.04 thru 0.05 => 0.0
setfield {chanpath} \
Y_B->table[0] 0.00 \ // -0.1 Volts
Y_B->table[1] 0.13 \
Y_B->table[2] 0.31 \ // -0.090
Y_B->table[3] 0.57 \
Y_B->table[4] 0.92 \ // -0.080
Y_B->table[5] 1.32 \
Y_B->table[6] 1.93 \ // -0.070
Y_B->table[7] 2.72 \
Y_B->table[8] 3.60 \ // -0.060 mV
Y_B->table[9] 3.95 \
Y_B->table[10] 4.13 \ // -0.050 mV
Y_B->table[11] 4.20
settab2const {chanpath} Y_B 12 30 4.26 // -0.04 thru 0.05=> 4.26
/* Setting the calc_mode to NO_INTERP for speed */
setfield {chanpath} Y_A->calc_mode 0 Y_B->calc_mode 0
/* tweaking the tables for the tabchan calculation */
tweakalpha {chanpath} Y
/* Filling the tables using B-SPLINE interpolation */
call {chanpath} TABFILL Y 3000 0
end
/**********************************************************************
** High threshold Ca-current
** Adams and Gage, J. Physiol 289 p143 (1979) (Aplysia R15)
**********************************************************************/
function make_Ca_aplysia_ag // Ca-current
str chanpath = "Ca_aplysia_ag"
if ({exists {chanpath}})
return
end
create tabchannel {chanpath}
setfield {chanpath} \
Ek {ECa} \
Gbar {65.2 * SOMA_A} \
Ik 0 \
Gk 0 \
Xpower 2 \
Ypower 1 \
Zpower 0
call {chanpath} TABCREATE X 30 -0.100 0.050
settab2const {chanpath} X_A 0 18 0.0 //-0.1 thru -0.005 => 0.0
setfield {chanpath} \
X_A->table[19] 0.0 \ // -0.005 Volts
X_A->table[20] 39.2 \ // 0.0
X_A->table[21] 46.7 \ // 0.005
X_A->table[22] 54.2 \ // 0.010
X_A->table[23] 85.3 \ // 0.015
X_A->table[24] 111.9 \ // 0.020
X_A->table[25] 128.2 \ // 0.025
X_A->table[26] 144.6 \ // 0.030
X_A->table[27] 156.7 \ // 0.035
X_A->table[28] 166.7 \ // 0.040
X_A->table[29] 166.7 \ // 0.045
X_A->table[30] 166.7 // 0.050
settab2const {chanpath} X_B 0 17 250.0 //-0.1 thru -0.01 =>250
setfield {chanpath} \
X_B->table[18] 250.0 \ // -0.010 Volts
X_B->table[19] 217.0 \ // -0.005 Volts
X_B->table[20] 147.0 \ // 0.0
X_B->table[21] 103.9 \ // 0.005
X_B->table[22] 64.4 \ // 0.010
X_B->table[23] 26.5 \ // 0.015
X_B->table[24] 8.55 \ // 0.020
X_B->table[25] 2.35 \ // 0.025
X_B->table[26] 0.58 \ // 0.030
X_B->table[27] 0.0 \ // 0.035
X_B->table[28] 0.0 \ // 0.040
X_B->table[29] 0.0 \ // 0.045
X_B->table[30] 0.0 // 0.050
/* Setting the calc_mode to NO_INTERP for speed */
setfield {chanpath} X_A->calc_mode 0 X_B->calc_mode 0
/* tweaking the tables for the tabchan calculation */
tweakalpha {chanpath} X
/* Filling the tables using B-SPLINE interpolation */
call {chanpath} TABFILL X 3000 0
call {chanpath} TABCREATE Y 30 -0.100 0.050
settab2const {chanpath} Y_A 0 11 10.0 // -0.1 to -0.04=>10.0
setfield {chanpath} \
Y_A->table[12] 10.0 \ // -0.040 Volts
Y_A->table[13] 9.7 \
Y_A->table[14] 9.24 \ // -0.030
Y_A->table[15] 7.5 \
Y_A->table[16] 5.0 \ // -0.020
Y_A->table[17] 2.5 \
Y_A->table[18] 0.633 \ // -0.010
Y_A->table[19] 0.153 \
Y_A->table[20] 0.004 \ // 0.00
Y_A->table[21] 0.0
settab2const {chanpath} Y_A 22 30 0.0 // 0.01 thru 0.05 => 0.0
settab2const {chanpath} Y_B 0 11 0.0 // -0.1 to -0.04=>00.0
setfield {chanpath} \
Y_B->table[12] 0.0 \ // -0.040 Volts
Y_B->table[13] 0.3 \
Y_B->table[14] 0.76 \ // -0.030
Y_B->table[15] 2.5 \
Y_B->table[16] 5.0 \ // -0.020
Y_B->table[17] 6.5 \
Y_B->table[18] 7.7 \ // -0.010
Y_B->table[19] 6.51 \
Y_B->table[20] 5.68 \ // 0.00
Y_B->table[21] 4.44 \
Y_B->table[22] 3.85 \ // 0.010
Y_B->table[23] 5.26 \
Y_B->table[24] 8.33 \ // 0.020
Y_B->table[25] 11.11 \
Y_B->table[26] 14.29 \ // 0.030
Y_B->table[27] 16.67 \
Y_B->table[28] 18.18 \ // 0.040
Y_B->table[29] 18.18 \
Y_B->table[30] 18.18 //0.05
/* Setting the calc_mode to NO_INTERP for speed */
setfield {chanpath} Y_A->calc_mode 0 Y_B->calc_mode 0
/* tweaking the tables for the tabchan calculation */
tweakalpha {chanpath} Y
/* Filling the tables using B-SPLINE interpolation */
call {chanpath} TABFILL Y 3000 0
end
/**********************************************************************
** B-current : Slow inward Na and Ca bursting conductance
** SJ Smith and SH Thompson J.Physiol 382 p425 (1987) (Tritonia)
**********************************************************************/
function make_B_trit_st
str chanpath = "B_trit_st"
if ({exists {chanpath}})
return
end
create tabchannel {chanpath}
setfield {chanpath} \
Ek {EB} \
Gbar {0.35*SOMA_A} \
Ik 0 \
Gk 0 \
Xpower 1 \
Ypower 0 \
Zpower 0
call {chanpath} TABCREATE X 30 -0.100 0.050 // in volts
settab2const {chanpath} X_A 0 7 2.270
setfield {chanpath} X_A->table[8] 2.270 \ // -60 mV
X_A->table[9] 2.040 \ // -55 mV
X_A->table[10] 1.800 \ // -50 mV
X_A->table[11] 1.513 \ // -45 mV
X_A->table[12] 1.220 \ // -40 mV
X_A->table[13] 0.957 \ // -35 mV
X_A->table[14] 0.690 \ // -30 mV
X_A->table[15] 0.515 \ // -25 mV
X_A->table[16] 0.390 \ // -20 mV
X_A->table[17] 0.337 \ // -15 mV
X_A->table[18] 0.310 \ // -10 mV
X_A->table[19] 0.271 \ // -5 mV
X_A->table[20] 0.240 \ // 0 mV
X_A->table[21] 0.216 \ // 5 mV
X_A->table[22] 0.209 \ // 10 mV
X_A->table[23] 0.205 \ // 15 mV
X_A->table[24] 0.202 \ // 20 mV
X_A->table[25] 0.191 \ // 25 mV
X_A->table[26] 0.174 \ // 30 mV
X_A->table[27] 0.157 \ // 35 mV
X_A->table[28] 0.139 \ // 40 mV
X_A->table[29] 0.115 \ // 45 mV
X_A->table[30] 0.104 // 50 mV
settab2const {chanpath} X_B 0 8 0.0
setfield {chanpath} X_B->table[9] 0.0 \ // -55 mV
X_B->table[10] 0.011 \ // -50 mV
X_B->table[11] 0.0224\ // -45 mV
X_B->table[12] 0.0370\ // -40 mV
X_B->table[13] 0.0555\ // -35 mV
X_B->table[14] 0.0815\ // -30 mV
X_B->table[15] 0.1111\ // -25 mV
X_B->table[16] 0.1333\ // -20 mV
X_B->table[17] 0.155 \ // -15 mV
X_B->table[18] 0.181 \ // -10 mV
X_B->table[19] 0.200 \ // -5 mV
X_B->table[20] 0.222 \ // 0 mV
X_B->table[21] 0.244 \ // 5 mV
X_B->table[22] 0.270 \ // 10 mV
X_B->table[23] 0.296 \ // 15 mV
X_B->table[24] 0.322 \ // 20 mV
X_B->table[25] 0.357 \ // 25 mV
X_B->table[26] 0.400 \ // 30 mV
X_B->table[27] 0.456 \ // 35 mV
X_B->table[28] 0.504 \ // 40 mV
X_B->table[29] 0.550 \ // 45 mV
X_B->table[30] 0.585 // 50 mV
/* tweaking the tables for the tabchan calculation */
tweaktau {chanpath} X
/* Filling the tables using B-SPLINE interpolation */
call {chanpath} TABFILL X 3000 0
/* Setting the calc_mode to NO_INTERP for speed */
setfield {chanpath} X_A->calc_mode 0 X_B->calc_mode 0
end
//========================================================================
// Ca concentration (from Ca and B channels)
//========================================================================
// Cell reader will set up messages from Ca_aplysia_ag and from B_trit_st
// If these channel names are changed in the channel creation functions,
// change them in the messages here also
function make_Ca_conc
if ({exists Ca_conc})
return
end
create Ca_concen Ca_conc
setfield Ca_conc \
tau 17.5 \ // sec
B 1000 \ // Curr to conc for soma
Ca_base 0
addfield Ca_conc addmsg1
addfield Ca_conc addmsg2
setfield Ca_conc \
addmsg1 "../Ca_aplysia_ag . I_Ca Ik" \
addmsg2 "../B_trit_st . I_Ca Ik"
end
//========================================================================
// Ca-dependent K Channel - K(C) - (vdep_channel with table and tabgate)
// Voltage and [Ca] dependence was taken from A. L. F. Gorman and M. V.
// Thomas, J. Physiol. (London) 308: 287-313 (1980). (Aplysia R15)
//========================================================================
function make_Kc_aplysia_gt
str chanpath = "K_C"
if ({exists {chanpath}})
return
end
create vdep_channel {chanpath}
setfield ^ \
Ek {EK} \ // V
gbar { 124.0 * SOMA_A } \ // S
Ik 0 \ // A
Gk 0 // S
// Create a table for the function of concentration, allowing a
// concentration range of 0 to 2000e-6, with 50 divisions. Note that the
// internal field for the table object is called "table".
float xmin = 0.0
float xmax = 0.002
int xdivs = 50
float Ca_max = 187e-6 // nominal conc for expt results = 187 nM
create table {chanpath}/tab
call {chanpath}/tab TABCREATE {xdivs} {xmin} {xmax}
int i
float x,dx,y
dx = (xmax - xmin)/xdivs
x = xmin
// The concentration-dependent factor is a linear function of [Ca]
// which is unity at [Ca] = Ca_max
for (i = 0 ; i <= {xdivs} ; i = i + 1)
y = x/Ca_max
setfield {chanpath}/tab table->table[{i}] {y}
x = x + dx
end
// Expand the table to 3000 entries to use without interpolation. The
// TABFILL syntax is slightly different from that used with tabchannels.
// Here there is only one internal table, so the table name is not specified.
setfield {chanpath}/tab table->calc_mode 0
call {chanpath}/tab TABFILL 3000 0
// Now make a tabgate for the voltage-dependent activation parameter.
float xmin = -0.1
float xmax = 0.05
int xdivs = 49
create tabgate {chanpath}/X
call {chanpath}/X TABCREATE alpha {xdivs} {xmin} {xmax}
call {chanpath}/X TABCREATE beta {xdivs} {xmin} {xmax}
int i
float x,dx,alpha,beta, minf, tau
tau = 3.8 // estimate from Thompson, Smith and Johnson 1986
dx = (xmax - xmin)/xdivs
x = xmin
for (i = 0 ; i <= {xdivs} ; i = i + 1)
minf = 1/(1.0 + {exp {(0.0653 - x)/0.0253}})
alpha = minf/tau
beta = (1-minf)/tau
setfield {chanpath}/X alpha->table[{i}] {alpha}
setfield {chanpath}/X beta->table[{i}] {beta}
x = x + dx
end
setfield {chanpath}/X alpha->calc_mode 0 beta->calc_mode 0
call {chanpath}/X TABFILL alpha 3000 0
call {chanpath}/X TABFILL beta 3000 0
addmsg {chanpath}/tab {chanpath} MULTGATE output 1
addmsg {chanpath}/X {chanpath} MULTGATE m 1
addfield {chanpath} addmsg1
addfield {chanpath} addmsg2
setfield {chanpath} \
addmsg1 "../Ca_conc tab INPUT Ca" \
addmsg2 ".. X VOLTAGE Vm"
end
|