1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
//genesis - thalchan.g
/**************************************************************************
**
** THALCHAN : channel definition file
**
** By Pratik Mukherjee, Aug. 1991
**
** All units are in SI (Meters Kilograms Seconds Amps). While this
** does result in lots of powers of 10 in the parameters, it prevents
** the chaos of interconversions when relating parameters of different
** units.
**
***************************************************************************/
//========================================================================
// ACTIVE SQUID NA CHANNEL (TABULATED)
// A.L.Hodgkin and A.F.Huxley, J.Physiol(Lond) 117, pp 500-544 (1952)
//========================================================================
// This channel forcibly sets EREST_ACT to -0.045 V to compute V0
function make_Na_squid_tab
float tempvar
if (({exists Na_squid_tab}))
return
end
tempvar = {EREST_ACT}
EREST_ACT = -0.045
create tabchannel Na_squid_tab
setfield Na_squid_tab Ek {ENA_ACT} Gbar {1.2e3*{SOMA_A}} \
Xpower 3.0 Ypower 1.0 Zpower 0.0
setupalpha Na_squid_tab X {0.1e6*(0.025 + {EREST_ACT})} \
-0.1e6 -1.0 {-0.025 - {EREST_ACT}} -0.010 4.0e3 0.0 0.0 \
{0.0 - {EREST_ACT}} 18.0e-3
setupalpha Na_squid_tab Y 70.0 0.0 0.0 {0.0 - {EREST_ACT}} \
20.0e-3 1.0e3 0.0 1.0 {-0.030 - {EREST_ACT}} -10.0e-3
EREST_ACT = tempvar
end
//========================================================================
// SEJNOWSKI CORTICAL FAST NA CHANNEL (TABULATED)
// Lytton & Sejnowski (1991), J. Neurophysiology, in press
//========================================================================
// This channel assumes an EREST_ACT of -0.062 V for published kinetics
function setup_tabchan_bg(chan, table, z, gamma, V0, A0, B0, temp, tmin)
str chan, table
float z, gamma, V0, A0, B0, temp, tmin
float AA, AB, AC, AD, AF, BA, BB, BC, BD, BF
float T = temp + 273.15
int i
str tabB = (table) @ "_B"
AB = 0 /* convert from Borg-Graham to Hodgkin-Huxley format */
BB = 0
AC = 0
BC = 0
AA = A0
BA = B0
AD = (-1.0*V0)
BD = (-1.0*V0)
AF = (-1.0*{R}*T/(z*gamma*{F}))
BF = (-1.0*{R}*T/(-1*z*(1 - gamma)*{F}))
setupalpha {chan} {table} {AA} {AB} {AC} {AD} {AF} {BA} {BB} \
{BC} {BD} {BF}
end
function make_Na_sej_tab
if (({exists Na_sej_tab}))
return
end
create tabchannel Na_sej_tab
setfield Na_sej_tab Ek {ENA} Gbar {1.737e3*{SOMA_A}} Ik 0 Gk 0 \
Xpower 3 Ypower 1 Zpower 0
setup_tabchan_bg Na_sej_tab X 3.3 0.7 {0.0275 + {EREST_ACT}} \
4.2e3 4.2e3 37.0 5.0e-5
setup_tabchan_bg Na_sej_tab Y -3.0 0.27 {0.017 + {EREST_ACT}} \
90.0 90.0 37.0 2.5e-4
end
//----------------------------------------------------------------------------
// ACTIVE SQUID K CHANNEL (TABULATED)
// A.L.Hodgkin and A.F.Huxley, J.Physiol(Lond) 117, pp 500-544 (1952)
//----------------------------------------------------------------------------
function make_K_squid_tab
if (({exists K_squid_tab}))
return
end
create tabchannel K_squid_tab
setfield K_squid_tab Ek {EK} Gbar {360.0*{SOMA_A}} Xpower 4.0 \
Ypower 0.0 Zpower 0.0
setup_tabchan K_squid_tab X {10.0e3*(0.010 + {EREST_ACT})} \
-10.0e3 -1.0 {-10.0e-3 - {EREST_ACT}} -10.0e-3 125.0 0.0 0.0 \
{-1.0*{EREST_ACT}} 80.0e-3
end
//----------------------------------------------------------------------------
// DELAYED RECTIFIER K CURRENT
// McCormick et. al. (1991), Single Neuron Computation, Academic Press
//----------------------------------------------------------------------------
// This channel forcibly sets EREST_ACT to -0.085 V to compute V0
// Kinetics at -0.085 V match published kinetics
function make_K_lgn_hh
float tempvar
if (({exists K_lgn_hh}))
return
end
tempvar = {EREST_ACT}
// McCormick's EREST
EREST_ACT = -0.085
create hh_channel K_lgn_hh
setfield K_lgn_hh Ek {EK} Gbar {180.0*{SOMA_A}} Xpower 4.0 \
Ypower 0.0 X_alpha_FORM {LINOID} X_alpha_A -9.6e4 \
X_alpha_B -5.0e-3 X_alpha_V0 {{EREST_ACT} + 0.040} \
X_beta_FORM {EXPONENTIAL} X_beta_A 1.5e3 X_beta_B -4.0e-2 \
X_beta_V0 {{EREST_ACT} + 0.035}
EREST_ACT = tempvar
end
//----------------------------------------------------------------------------
// DELAYED RECTIFIER K CURRENT (TABULATED)
// McCormick et. al. (1991), Single Neuron Computation, Academic Press
//----------------------------------------------------------------------------
// This channel forcibly sets EREST_ACT to -0.085 V to compute V0
// Kinetics at -0.085 V match published kinetics
function make_K_lgn_tab
float tempvar
if (({exists K_lgn_tab}))
return
end
tempvar = {EREST_ACT}
EREST_ACT = -0.085 // McCormick's EREST
create tabchannel K_lgn_tab
setfield K_lgn_tab Ek {EK} Gbar {180.0*{SOMA_A}} Xpower 4.0 \
Ypower 0.0 Zpower 0.0
setup_tabchan K_lgn_tab X 9.6e4*{{EREST_ACT} + 0.040} -9.6e4 \
-1.0 {-{EREST_ACT} - 0.040} -5.0e-3 1.5e3 0.0 0.0 \
{-{EREST_ACT} - 0.035} 4.0e-2
EREST_ACT = tempvar
end
//========================================================================
// LOW-THRESHOLD CA (T) CHANNEL
// McCormick (1991), Single Neuron Computation, Academic Press
//========================================================================
// This channel forcibly sets EREST_ACT to -0.085 V to compute V0
// Kinetics at -0.085 V match published kinetics
function make_Ca_lgn_hh
float tempvar
if (({exists Ca_lgn_hh}))
return
end
tempvar = {EREST_ACT}
// McCormick's EREST
EREST_ACT = -0.085
create hh_channel Ca_lgn_hh
setfield Ca_lgn_hh Ek {ECA} Gbar {379.1*{SOMA_A}} Xpower 2.0 \
Ypower 1.0 X_alpha_FORM {LINOID} X_alpha_A -7.5e4 \
X_alpha_B -7.5e-3 X_alpha_V0 {{EREST_ACT} + 0.035} \
X_beta_FORM {LINOID} X_beta_A 1.01e4 X_beta_B 4.4e-3 \
X_beta_V0 {{EREST_ACT} + 0.034} Y_alpha_FORM {LINOID} \
Y_alpha_A 344.0 Y_alpha_B 4.45e-3 \
Y_alpha_V0 {{EREST_ACT} + 0.006} Y_beta_FORM {LINOID} \
Y_beta_A -309.3 Y_beta_B -4.0e-3 Y_beta_V0 {EREST_ACT}
EREST_ACT = tempvar
end
//========================================================================
// SEJNOWSKI CA (T) CHANNEL (TABULATED)
// Lytton & Sejnowski (1991), J. Neurophysiology, in press
//========================================================================
// This channel assumes an EREST_ACT of -0.055 V for published kinetics
function make_Ca_sej_tab
if (({exists Ca_sej_tab}))
return
end
create tabchannel Ca_sej_tab
setfield Ca_sej_tab Ek {ECA} Gbar {10.0*{SOMA_A}} Ik 0 Gk 0 Xpower 3 \
Ypower 1 Zpower 0
setup_tabchan_bg Ca_sej_tab X 3.43 0.5 {-0.008 + {EREST_ACT}} \
60.0 60.0 23.0 2.5e-3
setup_tabchan_bg Ca_sej_tab Y -4.24 0.75 {-0.0285 + {EREST_ACT}} \
8.0 8.0 23.0 18.0e-3
end
//========================================================================
// HYPERPOLARIZATION-ACTIVATED K (H) CHANNEL (TABULATED)
// McCormick (1991), Single Neuron Computation, Academic Press
//========================================================================
function setup_Atable3_H(gate, table, xdivs, xmin, xmax)
str gate, table
int xdivs
float xmin, xmax
int i
float x, dx, y
dx = xdivs
dx = (xmax - xmin)/dx
x = xmin
for (i = 0; i <= (xdivs); i = i + 1)
y = 1.0/(({exp {-6.26 - 76.7*x}}) + ({exp {7.13 + 107.9*x}}))
setfield {gate} {table}->table[{i}] {y}
x = x + dx
end
end
function setup_Btable3_H(gate, table, xdivs, xmin, xmax)
str gate, table
int xdivs
float xmin, xmax
int i
float x, dx, y
dx = xdivs
dx = (xmax - xmin)/dx
x = xmin
for (i = 0; i <= (xdivs); i = i + 1)
y = (x + 0.069)/7.1e-3
y = 1.0/(1.0 + ({exp {y}}))
setfield {gate} {table}->table[{i}] {y}
x = x + dx
end
end
/* Sets up a tabchan with special non-hh params, with the non-interp option in
** a table of 3000 entries.
** This version uses parameters for tau and minf instead
** of alpha and beta */
function setup_tabchan_tau_H(chan, table)
str chan, table
str tabA = (table) @ "_A"
str tabB = (table) @ "_B"
call {chan} TABCREATE {table} 49 -0.1 0.05
setup_Atable3_H {chan} {tabA} 49 -0.1 0.05
setup_Btable3_H {chan} {tabB} 49 -0.1 0.05
tweaktau {chan} {table}
setfield {chan} {tabA}->calc_mode 0 {tabB}->calc_mode 0
call {chan} TABFILL {table} 3000 0
end
function make_H_lgn_tab
if (({exists H_lgn_tab}))
return
end
create tabchannel H_lgn_tab
setfield H_lgn_tab Ek {EH} Gbar {360.0*{SOMA_A}} Gk 0 Ik 0 \
Xpower 2 Ypower 0 Zpower 0
setup_tab_tau_H H_lgn_tab X
end
//==========================================================================
// K LEAK CHANNEL
// Pratik Mukherjee
//==========================================================================
// This channel is mainly used to regulate the resting membrane potential
function make_K_leak
if (({exists K_leak}))
return
end
create leakage K_leak
setfield K_leak Ek {EK} activation 0.0 Gk {Gleak} Ik 0.0 \
inject 0.0
end
|