File: constants.g

package info (click to toggle)
genesis 2.1-1.1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 14,288 kB
  • ctags: 10,667
  • sloc: ansic: 111,959; makefile: 2,240; yacc: 1,797; lex: 976; csh: 54; sh: 13
file content (490 lines) | stat: -rw-r--r-- 12,225 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
//genesis

// time scale factor 
// convert msec to sec
float SCALE = 1e-3
// no conversions
float SCALE = 1

// =====================================================================
//                          NETWORK DIMENSIONS
// =====================================================================

// cortical dimensions
// mm
float CORTEX_X = 10.0
// mm
float CORTEX_Y = 6.0

//                        PYRAMIDAL POPULATION

// # neurons in x 
int PYR_NX = 15
// # neurons in y
int PYR_NY = 9


echo Pyramidal array dimensions {PYR_NX} by {PYR_NY}

// cell spacing
// mm/cell 
float PYR_DX = CORTEX_X/PYR_NX
// mm/cell 
float PYR_DY = CORTEX_Y/PYR_NY

//                        FB INTERNEURON POPULATION

// # neurons in x 
int FB_NX = 1.0*PYR_NX
// # neurons in y
int FB_NY = 1.0*PYR_NY

echo FB interneuron array dimensions {FB_NX} by {FB_NY}

// mm/cell 
float FB_DX = CORTEX_X/FB_NX
// mm/cell 
float FB_DY = CORTEX_Y/FB_NY

//                        FF INTERNEURON POPULATION

// # neurons in x 
int FF_NX = 1.0*PYR_NX
// # neurons in y
int FF_NY = 1.0*PYR_NY

echo FF interneuron array dimensions {FF_NX} by {FF_NY}

// mm/cell 
float FF_DX = CORTEX_X/FF_NX
// mm/cell 
float FF_DY = CORTEX_Y/FF_NY

//                        AFFERENT POPULATION

// # neurons in x 
int BULB_NX = 10
// # neurons in y 
int BULB_NY = 1

echo Bulbar dimensions {BULB_NX} by {BULB_NY}

// shrink the scales to that of the LOT input dimensions 

// mm/fiber 
float BULB_DX = 1e-3
// mm/fiber 
float BULB_DY = 1e-3

// deep collaterals in rat - Haberly and Presto (1986), J.Comp.Neur.,248,464-474
// local axon collaterals remain in layer III for 1-2 mm
//                         PATHWAY EXTENTS

// 0.5 			// mm
float RPYR_to_LOCAL = 1.0
// mm
float RPYR_to_FB = 2.0
// mm
float RPYR_to_FF = 0.5
// mm
float RFB_to_PYR = 2.0
// mm
float RFF_to_PYR = 2.0
// mm
float RPYR_to_RDIST = 20.0
// mm
float RPYR_to_CDIST = 20.0

// =====================================================================
//                REPRESENTATIVE CELL DENSITY 
// =====================================================================
// The locus of each simulated cell represents some number of 
// actual cells. This can be specified as a fixed number which
// is invariant over the number of simulated cells. 
// This is equivalent to having the simulation represent a sparse sample
// of cortical cells versus a lumped representation of the total number of
// cells as reflected in the weight of synaptic enervation.
// The aim is to break the amplification which arises when single cells
// represent large numbers of cells (small simulations).
// The desire is to normalize the effect of a single cell on another cell
// to a reasonable, stable value.
// The total number of actual cells represented will vary with simulation
// size while the average input activity to a cell will remain more
// stable in that a given number of active cells in the simulated network will
// activate a consistent number of representative synapses.
// The total number of potential synaptic contacts onto a cell will
// vary directly with the ratio of cells included in the simulated cortex 
// versus the actual number of cells.
float DENSITY_FACTOR = 1.0

// =====================================================================
//                          CONNECTION DENSITY
// =====================================================================
// connection probabilities
float PPYR_to_RLOCAL = 1.2
float PPYR_to_CLOCAL = 1.2
float PPYR_to_RDIST = 1.1
float PPYR_to_CDIST = 1.1
float PPYR_to_FB = 0.2
if ({LOCAL_FF})
    float PPYR_to_FF = 0.2
else
    float PPYR_to_FF = 0.2
end
float PFB_to_PYR = 1.0
float PFF_to_PYR = 1.0
float PBULB_to_PYR = 0.1
float PBULB_to_FF = 0.1
float PBULB_to_FB = 0.1

// synaptic target count	(synapses/path)
float NSYN_PYR_from_BULB = 1200
float NSYN_PYR_from_CA = 1200
float NSYN_PYR_from_RA = 700
float NSYN_PYR_from_FB = 800
// standard deviation
float SDSYN_PYR_from_FB = 80
float NSYN_PYR_from_FF = 200
// standard deviation
float SDSYN_PYR_from_FF = 20
float NSYN_PYR_from_CLOCAL = 300
float NSYN_PYR_from_RLOCAL = 300

float NSYN_FB_from_PYR = 800
// standard deviation
float SDSYN_FB_from_PYR = 80

float NSYN_FB_from_FB = 80
// standard deviation
float SDSYN_FB_from_FB = 8

float NSYN_FF_from_PYR = 200
// standard deviation
float SDSYN_FF_from_PYR = 20

float NSYN_FB_from_BULB = 75
float NSYN_FF_from_BULB = 200

// source cell count 		(src_cells)
float NBULB_to_PYR = PBULB_to_PYR*BULB_NX*BULB_NY
float NBULB_to_FF = PBULB_to_FF*BULB_NX*BULB_NY
float NBULB_to_FB = PBULB_to_FB*BULB_NX*BULB_NY

// network space constants
// mm	
float LPYR_to_RLOCAL = 5.0
// mm	
float LPYR_to_CLOCAL = 5.0
// mm	
float LPYR_to_CA = 5.0
// mm	
float LPYR_to_RA = 5.0
// mm	
float LPYR_to_FB = 5.0
// mm	
float LPYR_to_FF = 5.0
// mm	
float LFB_to_PYR = 5.0
// mm	
float LFB_to_FB = 5.0
// mm	
float LFF_to_PYR = 5.0
// mm	
float LBULB_to_MAIN = 20.0
// mm	
float LBULB_to_COLL = 10.0


// connection normalization factors	(synapses/src_cell)
// calculate the convergent synapses to a predetermined target point
// and normalize the total number to a fixed value

//	target path		  target  path  src 
// this will normalize the number of synapses of the most rostral
// targets and not the central target used for other pathway 
// normalization
float WBULB_to_FF = NSYN_FF_from_BULB/NBULB_to_FF
float WBULB_to_FB = NSYN_FB_from_BULB/NBULB_to_FB
float WBULB_to_PYR = NSYN_PYR_from_BULB/NBULB_to_PYR

// asymptotic connection level		(fractional synapses/src_cell)
float AWPYR_to_RLOCAL = 0.2
float AWPYR_to_CLOCAL = 0.2
float AWPYR_to_CA = 0.6
// MODIFIED
float AWPYR_to_CA = 0.4
float AWPYR_to_RA = 0.4
float AWPYR_to_FB = 0.2
float AWPYR_to_FF = 0.2
float AWFB_to_PYR = 0.2
float AWFB_to_FB = 0.2
float AWFF_to_PYR = 0.2
float AWBULB_to_FF = 0.2*WBULB_to_FF
float AWBULB_to_FB = 0.2*WBULB_to_FB
float AWBULB_to_PYR = 0.2*WBULB_to_PYR

// velocities				(m/s)
// association fiber conduction velocity - Haberly (???) ,Neuro.Sci.Abs,213
// velocity of caudally directed = .25 to .48 m/s
// velocity of rostral directed = .45 to 1.25 m/s
float VPYR_CA = 0.6
float SD_VPYR_CA = 0.05
float VPYR_CA_MIN = 0.45
float VPYR_CA_MAX = 0.75

float VPYR_RA = 0.85
float SD_VPYR_RA = 0.15
float VPYR_RA_MIN = 0.45
float VPYR_RA_MAX = 1.25

float VPYR_FF = 1.0
float SD_VPYR_FF = 0.05
float VPYR_FF_MIN = 0.8
float VPYR_FF_MAX = 1.2

float VPYR_FB = 1.0
float SD_VPYR_FB = 0.05
float VPYR_FB_MIN = 0.8
float VPYR_FB_MAX = 1.2

// LOT conduction velocity opossum - Haberly (1973), J.Neurophys.,36:4,775-788
// measured using evoked potential latencies
// velocity of main LOT = 7.0 m/s
// velocity of LOT collaterals = 1.6 m/s
float VLOT_MAIN = 7.0
float SD_VLOT_MAIN = 0.05
float VLOT_MAIN_MIN = 6.8
float VLOT_MAIN_MAX = 7.2

float VLOT_COLL = 1.6
float SD_VLOT_COLL = 0.05
float VLOT_COLL_MIN = 1.4
float VLOT_COLL_MAX = 1.8

float VFB_PYR = 1.0
float SD_VFB_PYR = 0.05
float VFB_PYR_MIN = 0.8
float VFB_PYR_MAX = 1.2

float VFF_PYR = 1.0
float SD_VFF_PYR = 0.05
float VFF_PYR_MIN = 0.8
float VFF_PYR_MAX = 1.2

// =====================================================================
//                          CELL DIMENSIONS
// =====================================================================

float PI = 3.14159

// pyramidal cell dimensions

// um
float PYR_SOMA_D = 20
// um
float PYR_SOMA_L = 70
// um^2
float PYR_SOMA_A = PI*PYR_SOMA_D*PYR_SOMA_L
// um^2
float PYR_SOMA_XA = PI*PYR_SOMA_D*PYR_SOMA_D/4
// um
float PYR_DEND_D = 4
// um
float PYR_DEND_L = 120
// um^2
float PYR_DEND_A = PI*PYR_DEND_D*PYR_DEND_L
// um^2
float PYR_DEND_XA = PI*PYR_DEND_D*PYR_DEND_D/4

// interneuron dimensions
// Haberly et al. (1987),J.Comp.Neurol,266,269-290
// mean GABA positive somata diameters in layers I,II, and III 
// from EM (table 2, pg283).
//     globular I and II, md = 10.6um
//     multipolar and fusiform II and III, md = 15.0um
// um
float GLOB_SOMA_D = 10
// um
float GLOB_SOMA_L = 10

// um
float FUS_SOMA_D = 15
// um
float FUS_SOMA_L = 15

// =====================================================================
//                        PHYSIOLOGICAL PARAMETERS
// =====================================================================

//                      IONIC EQUILIBRIUM POTENTIALS
// mV
float EKA = 0
// mV
float ENA = 55
// mV
float ECL = -65
// mV
float EK = -90
// mV
float PYR_EREST = -55
// mV
float I_EREST = -55


// Kandel,Schwartz, Principles of Neuroscience, 2nd ed.  pg 83
// gNa 8-18 pS,  gK 4-12 pS
// squid giant axon - Conti et al.(1975),J.Physiol(Lond),248,45-82
// gNa = 4pS
// squid giant axon - Conti and Neher(1980),Nature(Lond),285,140-143
// gK = 18pS
// mouse spinal neurone - Study and Barker(1981),PNAS USA,78:11,7180-7184
// GABA gCl = 18pS +- 5
// mouse spinal neurone - Mathers and Barker(1982),Int.Rev.Neurobiol,23,1-34
// gCl = 18pS
// rat hippocampal neurone - Segal and Barker(1984),J.Neurophys.,51:3,500-515
// gCl = 20pS response to GABA, muscimol, and glycine
//                           UNIT CONDUCTANCES
// 				(mS/channel)
float UNIT_GNA = 8e-9
float UNIT_GK = 4e-9
float UNIT_GCL = 20e-9

float SUNIT_GNA = 8e-9
float SUNIT_GK = 4e-9


// mouse spinal neurone - Study and Barker PNAS USA, 1981,78:11, 7180-7184
// GABA tau_Cl = 18.3 msec
// GABA+PB tau_Cl = 30-130 msec
//                           CHANNEL LIFETIMES
//				(msec)
float TAU_CL = 18

// squid giant axon - Conti et al.(1975),J.Physiol(Lond),248,45-82
// rhoNa = 330 channels/um^2
// squid giant axon - Conti and Neher(1980),Nature(Lond),285,140-143
// rhoK = 72 channels/um^2
//                           CHANNEL DENSITIES
// 				(channel/um^2)
float RHO_NA = 30
float RHO_CL = 20
float RHO_K = 30
float SRHO_NA = 330
float SRHO_K = 72
float IRHO_NA = 15
float IRHO_CL = 7

//                           SYNAPTIC AREA
// Haberly and Presto(1986),J.Comp.Neurol,248,464-474
// basal spine d = .40um
// distal spine d = .74um
// presynaptic to dendritic spines d = .61um
// presynaptic to dendritic shafts d = .89um
// presynaptic to initial segment d = .89um

// using synaptic contact area A = pi*d^2/4 
// 				(um^2/synapse)
// d=.40
float ASYN_LOCAL_NA = 0.12
// d=.74
float ASYN_DISTAL_NA = 0.43
// d=.89
float ASYN_CL = 0.62
// d=.74
float ASYN_K = 0.43

float IASYN_NA = 0.29
// d=.89
float IASYN_CL = 0.62

//                           ACTIVE AREA
// fraction of somatic area containing active channels
float fAC = 0.04


// muse spinal neurone - Study and Barker PNAS USA, 1981,78:11, 7180-7184
// GABA gCl_peak = 112nS
//                           PEAK CONDUCTANCE
// peak_g = unit_g * channel_density * synaptic_area
//				(mS/synapse)
float I_GMAX_NA = UNIT_GNA*IRHO_NA*IASYN_NA
float I_GMAX_CL = UNIT_GCL*IRHO_CL*IASYN_CL
float LOCAL_GMAX_NA = UNIT_GNA*RHO_NA*ASYN_LOCAL_NA
float DISTAL_GMAX_NA = UNIT_GNA*RHO_NA*ASYN_DISTAL_NA
float GMAX_K = UNIT_GK*RHO_K*ASYN_K
float GMAX_CL = UNIT_GCL*RHO_CL*ASYN_CL

// mS/um^2
float SGMAX_NA = SUNIT_GNA*SRHO_NA
// mS/um^2
float SGMAX_K = SUNIT_GK*SRHO_K

//                           MEMBRANE PARAMETERS
// Kohm-um^2
float RM = 4e+8
// Kohm-um
float RA = 0.10e+4
// uF/um^2
float CM = 2.0e-8

// Kohm-um^2
float I_RM = 2.0e+8
// Kohm-um
float I_RA = RA
// uF/um^2
float I_CM = CM

// Kohm-um^2
float I_RM2 = 2.0e+8
// Kohm-um
float I_RA = RA
// uF/um^2
float I_CM = CM

// time constants for pyramidal and deep multipolar
// Tseng and Haberly, J.Neurophys, 62:386-400,1989
// pyramidal = 8.2 msec
// deep multipolar = 12.9 msec

/*
** VARIABLES USED BY ACTIVE COMPONENTS
*/
int EXPONENTIAL = 1
int SIGMOID = 2
int LINOID = 3

// mV
float PYR_EREST_ABS = -70
// mV
float PYR_ENa = 115.0 + PYR_EREST_ABS
// mV
float PYR_EK = -12.0 + PYR_EREST_ABS
// mV
float PYR_Eleak = 10.6 + PYR_EREST_ABS

// msec
float SYNDELAY = 0.8
// msec
float FFDELAY = 8.0

/*
** BASELINE WEIGHTS FOR EEG SIMULATIONS
*/

float weight_RA = 1.0
float weight_CA = 1.0
float weight_fb_pyr = 1.075
float weight_fb_fb = 0
float weight_ff_pyr = 1.0
// 400	
float weight_bulb_pyr = 100.0
// 0.5	// 1.0	
float weight_bulb_ff = 0.5
// 0.25 	// 0.025	
float weight_bulb_fb = 0.30
// 0.25	// 0.75	
float weight_pyr_fb = 0.30
// 1.0	// 1.5
float weight_pyr_ff = 0.75
float weight_pyr_local = 1.0