1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
//genesis
// time scale factor
// convert msec to sec
float SCALE = 1e-3
// no conversions
float SCALE = 1
// =====================================================================
// NETWORK DIMENSIONS
// =====================================================================
// cortical dimensions
// mm
float CORTEX_X = 10.0
// mm
float CORTEX_Y = 6.0
// PYRAMIDAL POPULATION
// # neurons in x
int PYR_NX = 15
// # neurons in y
int PYR_NY = 9
echo Pyramidal array dimensions {PYR_NX} by {PYR_NY}
// cell spacing
// mm/cell
float PYR_DX = CORTEX_X/PYR_NX
// mm/cell
float PYR_DY = CORTEX_Y/PYR_NY
// FB INTERNEURON POPULATION
// # neurons in x
int FB_NX = 1.0*PYR_NX
// # neurons in y
int FB_NY = 1.0*PYR_NY
echo FB interneuron array dimensions {FB_NX} by {FB_NY}
// mm/cell
float FB_DX = CORTEX_X/FB_NX
// mm/cell
float FB_DY = CORTEX_Y/FB_NY
// FF INTERNEURON POPULATION
// # neurons in x
int FF_NX = 1.0*PYR_NX
// # neurons in y
int FF_NY = 1.0*PYR_NY
echo FF interneuron array dimensions {FF_NX} by {FF_NY}
// mm/cell
float FF_DX = CORTEX_X/FF_NX
// mm/cell
float FF_DY = CORTEX_Y/FF_NY
// AFFERENT POPULATION
// # neurons in x
int BULB_NX = 10
// # neurons in y
int BULB_NY = 1
echo Bulbar dimensions {BULB_NX} by {BULB_NY}
// shrink the scales to that of the LOT input dimensions
// mm/fiber
float BULB_DX = 1e-3
// mm/fiber
float BULB_DY = 1e-3
// deep collaterals in rat - Haberly and Presto (1986), J.Comp.Neur.,248,464-474
// local axon collaterals remain in layer III for 1-2 mm
// PATHWAY EXTENTS
// 0.5 // mm
float RPYR_to_LOCAL = 1.0
// mm
float RPYR_to_FB = 2.0
// mm
float RPYR_to_FF = 0.5
// mm
float RFB_to_PYR = 2.0
// mm
float RFF_to_PYR = 2.0
// mm
float RPYR_to_RDIST = 20.0
// mm
float RPYR_to_CDIST = 20.0
// =====================================================================
// REPRESENTATIVE CELL DENSITY
// =====================================================================
// The locus of each simulated cell represents some number of
// actual cells. This can be specified as a fixed number which
// is invariant over the number of simulated cells.
// This is equivalent to having the simulation represent a sparse sample
// of cortical cells versus a lumped representation of the total number of
// cells as reflected in the weight of synaptic enervation.
// The aim is to break the amplification which arises when single cells
// represent large numbers of cells (small simulations).
// The desire is to normalize the effect of a single cell on another cell
// to a reasonable, stable value.
// The total number of actual cells represented will vary with simulation
// size while the average input activity to a cell will remain more
// stable in that a given number of active cells in the simulated network will
// activate a consistent number of representative synapses.
// The total number of potential synaptic contacts onto a cell will
// vary directly with the ratio of cells included in the simulated cortex
// versus the actual number of cells.
float DENSITY_FACTOR = 1.0
// =====================================================================
// CONNECTION DENSITY
// =====================================================================
// connection probabilities
float PPYR_to_RLOCAL = 1.2
float PPYR_to_CLOCAL = 1.2
float PPYR_to_RDIST = 1.1
float PPYR_to_CDIST = 1.1
float PPYR_to_FB = 0.2
if ({LOCAL_FF})
float PPYR_to_FF = 0.2
else
float PPYR_to_FF = 0.2
end
float PFB_to_PYR = 1.0
float PFF_to_PYR = 1.0
float PBULB_to_PYR = 0.1
float PBULB_to_FF = 0.1
float PBULB_to_FB = 0.1
// synaptic target count (synapses/path)
float NSYN_PYR_from_BULB = 1200
float NSYN_PYR_from_CA = 1200
float NSYN_PYR_from_RA = 700
float NSYN_PYR_from_FB = 800
// standard deviation
float SDSYN_PYR_from_FB = 80
float NSYN_PYR_from_FF = 200
// standard deviation
float SDSYN_PYR_from_FF = 20
float NSYN_PYR_from_CLOCAL = 300
float NSYN_PYR_from_RLOCAL = 300
float NSYN_FB_from_PYR = 800
// standard deviation
float SDSYN_FB_from_PYR = 80
float NSYN_FB_from_FB = 80
// standard deviation
float SDSYN_FB_from_FB = 8
float NSYN_FF_from_PYR = 200
// standard deviation
float SDSYN_FF_from_PYR = 20
float NSYN_FB_from_BULB = 75
float NSYN_FF_from_BULB = 200
// source cell count (src_cells)
float NBULB_to_PYR = PBULB_to_PYR*BULB_NX*BULB_NY
float NBULB_to_FF = PBULB_to_FF*BULB_NX*BULB_NY
float NBULB_to_FB = PBULB_to_FB*BULB_NX*BULB_NY
// network space constants
// mm
float LPYR_to_RLOCAL = 5.0
// mm
float LPYR_to_CLOCAL = 5.0
// mm
float LPYR_to_CA = 5.0
// mm
float LPYR_to_RA = 5.0
// mm
float LPYR_to_FB = 5.0
// mm
float LPYR_to_FF = 5.0
// mm
float LFB_to_PYR = 5.0
// mm
float LFB_to_FB = 5.0
// mm
float LFF_to_PYR = 5.0
// mm
float LBULB_to_MAIN = 20.0
// mm
float LBULB_to_COLL = 10.0
// connection normalization factors (synapses/src_cell)
// calculate the convergent synapses to a predetermined target point
// and normalize the total number to a fixed value
// target path target path src
// this will normalize the number of synapses of the most rostral
// targets and not the central target used for other pathway
// normalization
float WBULB_to_FF = NSYN_FF_from_BULB/NBULB_to_FF
float WBULB_to_FB = NSYN_FB_from_BULB/NBULB_to_FB
float WBULB_to_PYR = NSYN_PYR_from_BULB/NBULB_to_PYR
// asymptotic connection level (fractional synapses/src_cell)
float AWPYR_to_RLOCAL = 0.2
float AWPYR_to_CLOCAL = 0.2
float AWPYR_to_CA = 0.6
// MODIFIED
float AWPYR_to_CA = 0.4
float AWPYR_to_RA = 0.4
float AWPYR_to_FB = 0.2
float AWPYR_to_FF = 0.2
float AWFB_to_PYR = 0.2
float AWFB_to_FB = 0.2
float AWFF_to_PYR = 0.2
float AWBULB_to_FF = 0.2*WBULB_to_FF
float AWBULB_to_FB = 0.2*WBULB_to_FB
float AWBULB_to_PYR = 0.2*WBULB_to_PYR
// velocities (m/s)
// association fiber conduction velocity - Haberly (???) ,Neuro.Sci.Abs,213
// velocity of caudally directed = .25 to .48 m/s
// velocity of rostral directed = .45 to 1.25 m/s
float VPYR_CA = 0.6
float SD_VPYR_CA = 0.05
float VPYR_CA_MIN = 0.45
float VPYR_CA_MAX = 0.75
float VPYR_RA = 0.85
float SD_VPYR_RA = 0.15
float VPYR_RA_MIN = 0.45
float VPYR_RA_MAX = 1.25
float VPYR_FF = 1.0
float SD_VPYR_FF = 0.05
float VPYR_FF_MIN = 0.8
float VPYR_FF_MAX = 1.2
float VPYR_FB = 1.0
float SD_VPYR_FB = 0.05
float VPYR_FB_MIN = 0.8
float VPYR_FB_MAX = 1.2
// LOT conduction velocity opossum - Haberly (1973), J.Neurophys.,36:4,775-788
// measured using evoked potential latencies
// velocity of main LOT = 7.0 m/s
// velocity of LOT collaterals = 1.6 m/s
float VLOT_MAIN = 7.0
float SD_VLOT_MAIN = 0.05
float VLOT_MAIN_MIN = 6.8
float VLOT_MAIN_MAX = 7.2
float VLOT_COLL = 1.6
float SD_VLOT_COLL = 0.05
float VLOT_COLL_MIN = 1.4
float VLOT_COLL_MAX = 1.8
float VFB_PYR = 1.0
float SD_VFB_PYR = 0.05
float VFB_PYR_MIN = 0.8
float VFB_PYR_MAX = 1.2
float VFF_PYR = 1.0
float SD_VFF_PYR = 0.05
float VFF_PYR_MIN = 0.8
float VFF_PYR_MAX = 1.2
// =====================================================================
// CELL DIMENSIONS
// =====================================================================
float PI = 3.14159
// pyramidal cell dimensions
// um
float PYR_SOMA_D = 20
// um
float PYR_SOMA_L = 70
// um^2
float PYR_SOMA_A = PI*PYR_SOMA_D*PYR_SOMA_L
// um^2
float PYR_SOMA_XA = PI*PYR_SOMA_D*PYR_SOMA_D/4
// um
float PYR_DEND_D = 4
// um
float PYR_DEND_L = 120
// um^2
float PYR_DEND_A = PI*PYR_DEND_D*PYR_DEND_L
// um^2
float PYR_DEND_XA = PI*PYR_DEND_D*PYR_DEND_D/4
// interneuron dimensions
// Haberly et al. (1987),J.Comp.Neurol,266,269-290
// mean GABA positive somata diameters in layers I,II, and III
// from EM (table 2, pg283).
// globular I and II, md = 10.6um
// multipolar and fusiform II and III, md = 15.0um
// um
float GLOB_SOMA_D = 10
// um
float GLOB_SOMA_L = 10
// um
float FUS_SOMA_D = 15
// um
float FUS_SOMA_L = 15
// =====================================================================
// PHYSIOLOGICAL PARAMETERS
// =====================================================================
// IONIC EQUILIBRIUM POTENTIALS
// mV
float EKA = 0
// mV
float ENA = 55
// mV
float ECL = -65
// mV
float EK = -90
// mV
float PYR_EREST = -55
// mV
float I_EREST = -55
// Kandel,Schwartz, Principles of Neuroscience, 2nd ed. pg 83
// gNa 8-18 pS, gK 4-12 pS
// squid giant axon - Conti et al.(1975),J.Physiol(Lond),248,45-82
// gNa = 4pS
// squid giant axon - Conti and Neher(1980),Nature(Lond),285,140-143
// gK = 18pS
// mouse spinal neurone - Study and Barker(1981),PNAS USA,78:11,7180-7184
// GABA gCl = 18pS +- 5
// mouse spinal neurone - Mathers and Barker(1982),Int.Rev.Neurobiol,23,1-34
// gCl = 18pS
// rat hippocampal neurone - Segal and Barker(1984),J.Neurophys.,51:3,500-515
// gCl = 20pS response to GABA, muscimol, and glycine
// UNIT CONDUCTANCES
// (mS/channel)
float UNIT_GNA = 8e-9
float UNIT_GK = 4e-9
float UNIT_GCL = 20e-9
float SUNIT_GNA = 8e-9
float SUNIT_GK = 4e-9
// mouse spinal neurone - Study and Barker PNAS USA, 1981,78:11, 7180-7184
// GABA tau_Cl = 18.3 msec
// GABA+PB tau_Cl = 30-130 msec
// CHANNEL LIFETIMES
// (msec)
float TAU_CL = 18
// squid giant axon - Conti et al.(1975),J.Physiol(Lond),248,45-82
// rhoNa = 330 channels/um^2
// squid giant axon - Conti and Neher(1980),Nature(Lond),285,140-143
// rhoK = 72 channels/um^2
// CHANNEL DENSITIES
// (channel/um^2)
float RHO_NA = 30
float RHO_CL = 20
float RHO_K = 30
float SRHO_NA = 330
float SRHO_K = 72
float IRHO_NA = 15
float IRHO_CL = 7
// SYNAPTIC AREA
// Haberly and Presto(1986),J.Comp.Neurol,248,464-474
// basal spine d = .40um
// distal spine d = .74um
// presynaptic to dendritic spines d = .61um
// presynaptic to dendritic shafts d = .89um
// presynaptic to initial segment d = .89um
// using synaptic contact area A = pi*d^2/4
// (um^2/synapse)
// d=.40
float ASYN_LOCAL_NA = 0.12
// d=.74
float ASYN_DISTAL_NA = 0.43
// d=.89
float ASYN_CL = 0.62
// d=.74
float ASYN_K = 0.43
float IASYN_NA = 0.29
// d=.89
float IASYN_CL = 0.62
// ACTIVE AREA
// fraction of somatic area containing active channels
float fAC = 0.04
// muse spinal neurone - Study and Barker PNAS USA, 1981,78:11, 7180-7184
// GABA gCl_peak = 112nS
// PEAK CONDUCTANCE
// peak_g = unit_g * channel_density * synaptic_area
// (mS/synapse)
float I_GMAX_NA = UNIT_GNA*IRHO_NA*IASYN_NA
float I_GMAX_CL = UNIT_GCL*IRHO_CL*IASYN_CL
float LOCAL_GMAX_NA = UNIT_GNA*RHO_NA*ASYN_LOCAL_NA
float DISTAL_GMAX_NA = UNIT_GNA*RHO_NA*ASYN_DISTAL_NA
float GMAX_K = UNIT_GK*RHO_K*ASYN_K
float GMAX_CL = UNIT_GCL*RHO_CL*ASYN_CL
// mS/um^2
float SGMAX_NA = SUNIT_GNA*SRHO_NA
// mS/um^2
float SGMAX_K = SUNIT_GK*SRHO_K
// MEMBRANE PARAMETERS
// Kohm-um^2
float RM = 4e+8
// Kohm-um
float RA = 0.10e+4
// uF/um^2
float CM = 2.0e-8
// Kohm-um^2
float I_RM = 2.0e+8
// Kohm-um
float I_RA = RA
// uF/um^2
float I_CM = CM
// Kohm-um^2
float I_RM2 = 2.0e+8
// Kohm-um
float I_RA = RA
// uF/um^2
float I_CM = CM
// time constants for pyramidal and deep multipolar
// Tseng and Haberly, J.Neurophys, 62:386-400,1989
// pyramidal = 8.2 msec
// deep multipolar = 12.9 msec
/*
** VARIABLES USED BY ACTIVE COMPONENTS
*/
int EXPONENTIAL = 1
int SIGMOID = 2
int LINOID = 3
// mV
float PYR_EREST_ABS = -70
// mV
float PYR_ENa = 115.0 + PYR_EREST_ABS
// mV
float PYR_EK = -12.0 + PYR_EREST_ABS
// mV
float PYR_Eleak = 10.6 + PYR_EREST_ABS
// msec
float SYNDELAY = 0.8
// msec
float FFDELAY = 8.0
/*
** BASELINE WEIGHTS FOR EEG SIMULATIONS
*/
float weight_RA = 1.0
float weight_CA = 1.0
float weight_fb_pyr = 1.075
float weight_fb_fb = 0
float weight_ff_pyr = 1.0
// 400
float weight_bulb_pyr = 100.0
// 0.5 // 1.0
float weight_bulb_ff = 0.5
// 0.25 // 0.025
float weight_bulb_fb = 0.30
// 0.25 // 0.75
float weight_pyr_fb = 0.30
// 1.0 // 1.5
float weight_pyr_ff = 0.75
float weight_pyr_local = 1.0
|