1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
|
//genesis
/* FILE INFORMATION
** The 1991 Traub set of voltage and concentration dependent channels
** Implemented as tabchannels by : Dave Beeman
** R.D.Traub, R. K. S. Wong, R. Miles, and H. Michelson
** Journal of Neurophysiology, Vol. 66, p. 635 (1991)
**
** This file depends on functions and constants defined in defaults.g
** As it is also intended as an example of the use of the tabchannel
** object to implement concentration dependent channels, it has extensive
** comments. Note that the original units used in the paper have been
** converted to SI (MKS) units. Also, we define the ionic equilibrium
** potentials relative to the resting potential, EREST_ACT. In the
** paper, this was defined to be zero. Here, we use -0.060 volts, the
** measured value relative to the outside of the cell.
*/
// CONSTANTS
float EREST_ACT = -0.060 /* hippocampal cell resting potl */
float ENA = 0.115 + EREST_ACT // 0.055
float EK = -0.015 + EREST_ACT // -0.075
float ECA = 0.140 + EREST_ACT // 0.080
float SOMA_A = 3.320e-9 // soma area in square meters
/*
For these channels, the maximum channel conductance (Gbar) has been
calculated using the CA3 soma channel conductance densities and soma
area. Typically, the functions which create these channels will be used
to create a library of prototype channels. When the cell reader creates
copies of these channels in various compartments, it will set the actual
value of Gbar by calculating it from the cell parameter file.
*/
//========================================================================
// Tabulated Ca Channel
//========================================================================
function make_Ca
if ({exists Ca})
return
end
create tabchannel Ca
setfield ^ \
Ek {ECA} \ // V
Gbar { 40 * SOMA_A } \ // S
Ik 0 \ // A
Gk 0 \ // S
Xpower 2 \
Ypower 1 \
Zpower 0
/*
Often, the alpha and beta rate parameters can be expressed in the functional
form y = (A + B * x) / (C + {exp({(x + D) / F})}). When this is the case,
case, the command "setupalpha chan gate AA AB AC AD AF BA BB BC BD BF" can be
used to simplify the process of initializing the A and B tables for the X, Y
and Z gates. Although setupalpha has been implemented as a compiled GENESIS
command, it is also defined as a script function in the neurokit/prototypes
defaults.g file. Although this command can be used as a "black box", its
definition shows some nice features of the tabchannel object, and some tricks
we will need when the rate parameters do not fit this form.
*/
// Converting Traub's expressions for the gCa/s alpha and beta functions
// to SI units and entering the A, B, C, D and F parameters, we get:
setupalpha Ca X 1.6e3 \
0 1.0 {-1.0 * (0.065 + EREST_ACT) } -0.01389 \
{-20e3 * (0.0511 + EREST_ACT) } \
20e3 -1.0 {-1.0 * (0.0511 + EREST_ACT) } 5.0e-3
/*
The Y gate (gCa/r) is not quite of this form. For V > EREST_ACT, alpha =
5*{exp({-50*(V - EREST_ACT)})}. Otherwise, alpha = 5. Over the entire
range, alpha + beta = 5. To create the Y_A and Y_B tables, we use some
of the pieces of the setupalpha function.
*/
// Allocate space in the A and B tables with room for xdivs+1 = 50 entries,
// covering the range xmin = -0.1 to xmax = 0.05.
float xmin = -0.1
float xmax = 0.05
int xdivs = 49
call Ca TABCREATE Y {xdivs} {xmin} {xmax}
// Fill the Y_A table with alpha values and the Y_B table with (alpha+beta)
int i
float x,dx,y
dx = (xmax - xmin)/xdivs
x = xmin
for (i = 0 ; i <= {xdivs} ; i = i + 1)
if (x > EREST_ACT)
y = 5.0*{exp {-50*(x - EREST_ACT)}}
else
y = 5.0
end
setfield Ca Y_A->table[{i}] {y}
setfield Ca Y_B->table[{i}] 5.0
x = x + dx
end
// For speed during execution, set the calculation mode to "no interpolation"
// and use TABFILL to expand the table to 3000 entries.
setfield Ca Y_A->calc_mode 0 Y_B->calc_mode 0
call Ca TABFILL Y 3000 0
end
/****************************************************************************
Next, we need an element to take the Calcium current calculated by the Ca
channel and convert it to the Ca concentration. The "Ca_concen" object
solves the equation dC/dt = B*I_Ca - C/tau, and sets Ca = Ca_base + C. As
it is easy to make mistakes in units when using this Calcium diffusion
equation, the units used here merit some discussion.
With Ca_base = 0, this corresponds to Traub's diffusion equation for
concentration, except that the sign of the current term here is positive, as
GENESIS uses the convention that I_Ca is the current flowing INTO the
compartment through the channel. In SI units, the concentration is usually
expressed in moles/m^3 (which equals millimoles/liter), and the units of B
are chosen so that B = 1/(ion_charge * Faraday * volume). Current is
expressed in amperes and one Faraday = 96487 coulombs. However, in this
case, Traub expresses the concentration in arbitrary units, current in
microamps and uses tau = 13.33 msec. If we use the same concentration units,
but express current in amperes and tau in seconds, our B constant is then
10^12 times the constant (called "phi") used in the paper. The actual value
used will be typically be determined by the cell reader from the cell
parameter file. However, for the prototype channel we wlll use Traub's
corrected value for the soma. (An error in the paper gives it as 17,402
rather than 17.402.) In our units, this will be 17.402e12.
****************************************************************************/
//========================================================================
// Ca conc
//========================================================================
function make_Ca_conc
if ({exists Ca_conc})
return
end
create Ca_concen Ca_conc
setfield Ca_conc \
tau 0.01333 \ // sec
B 17.402e12 \ // Curr to conc for soma
Ca_base 0.0
addfield Ca_conc addmsg1
setfield Ca_conc \
addmsg1 "../Ca . I_Ca Ik"
end
/*
This Ca_concen element should receive an "I_Ca" message from the calcium
channel, accompanied by the value of the calcium channel current. As we
will ordinarily use the cell reader to create copies of these prototype
elements in one or more compartments, we need some way to be sure that the
needed messages are established. Although the cell reader has enough
information to create the messages which link compartments to their channels
and to other adjacent compartments, it most be provided with the information
needed to establish additional messages. This is done by placing the
message string in a user-defined field of one of the elements which is
involved in the message. The cell reader recognizes the added field names
"addmsg1", "addmsg2", etc. as indicating that they are to be
evaluated and used to set up messages. The paths are relative to the
element which contains the message string in its added field. Thus,
"../Ca" refers to the sibling element Ca and "."
refers to the Ca_conc element itself.
*/
//========================================================================
// Tabulated Ca-dependent K AHP Channel
//========================================================================
/* This is a tabchannel which gets the calcium concentration from Ca_conc
in order to calculate the activation of its Z gate. It is set up much
like the Ca channel, except that the A and B tables have values which are
functions of concentration, instead of voltage.
*/
function make_K_AHP
if ({exists K_AHP})
return
end
create tabchannel K_AHP
setfield ^ \
Ek {EK} \ // V
Gbar { 8 * SOMA_A } \ // S
Ik 0 \ // A
Gk 0 \ // S
Xpower 0 \
Ypower 0 \
Zpower 1
// Allocate space in the Z gate A and B tables, covering a concentration
// range from xmin = 0 to xmax = 1000, with 50 divisions
float xmin = 0.0
float xmax = 1000.0
int xdivs = 50
call K_AHP TABCREATE Z {xdivs} {xmin} {xmax}
int i
float x,dx,y
dx = (xmax - xmin)/xdivs
x = xmin
for (i = 0 ; i <= {xdivs} ; i = i + 1)
if (x < 500.0)
y = 0.02*x
else
y = 10.0
end
setfield K_AHP Z_A->table[{i}] {y}
setfield K_AHP Z_B->table[{i}] {y + 1.0}
x = x + dx
end
// For speed during execution, set the calculation mode to "no interpolation"
// and use TABFILL to expand the table to 3000 entries.
setfield K_AHP Z_A->calc_mode 0 Z_B->calc_mode 0
call K_AHP TABFILL Z 3000 0
// Use an added field to tell the cell reader to set up the
// CONCEN message from the Ca_concen element
addfield K_AHP addmsg1
setfield K_AHP \
addmsg1 "../Ca_conc . CONCEN Ca"
end
//========================================================================
// Ca-dependent K Channel - K(C) - (vdep_channel with table and tabgate)
//========================================================================
/*
The expression for the conductance of the potassium C-current channel has a
typical voltage and time dependent activation gate, where the time
dependence arises from the solution of a differential equation containing
the rate parameters alpha and beta. It is multiplied by a function of
calcium concentration which is given explicitly rather than being obtained
from a differential equation. Therefore, we need a way to multiply the
activation by a concentration dependent value which is determined from a
lookup table. GENESIS 1.3 doesn't have a way to implement this with a
tabchannel, so we use the "vdep_channel" object here. These channels
contain no gates and get their activation gate values from external gate
elements, via a "MULTGATE" message. These gates are usually created with
"tabgate" objects, which are similar to the internal gates of the
tabchannels. However, any object which can send the value of one of its
fields to the vdep_channel can be used as the gate. Here, we use the
"table" object. This generality makes the vdep_channel very useful, but it
is slower than the tabchannel because of the extra message passing involved.
*/
function make_K_C
if ({exists K_C})
return
end
create vdep_channel K_C
setfield ^ \
Ek {EK} \ // V
gbar { 100.0 * SOMA_A } \ // S
Ik 0 \ // A
Gk 0 // S
// Create a table for the function of concentration, allowing a
// concentration range of 0 to 1000, with 50 divisions. Note that the
// internal field for the table object is called "table".
float xmin = 0.0
float xmax = 1000.0
int xdivs = 50
create table K_C/tab
call K_C/tab TABCREATE {xdivs} {xmin} {xmax}
int i
float x,dx,y
dx = (xmax - xmin)/xdivs
x = xmin
for (i = 0 ; i <= {xdivs} ; i = i + 1)
if (x < 250.0)
y = x/250.0
else
y = 1.0
end
setfield K_C/tab table->table[{i}] {y}
x = x + dx
end
// Expand the table to 3000 entries to use without interpolation. The
// TABFILL syntax is slightly different from that used with tabchannels.
// Here there is only one internal table, so the table name is not specified.
setfield K_C/tab table->calc_mode 0
call K_C/tab TABFILL 3000 0
// Now make a tabgate for the voltage-dependent activation parameter.
float xmin = -0.1
float xmax = 0.05
int xdivs = 49
create tabgate K_C/X
call K_C/X TABCREATE alpha {xdivs} {xmin} {xmax}
call K_C/X TABCREATE beta {xdivs} {xmin} {xmax}
// The tabgate has two internal tables, alpha and beta. These are filled
// like those of the tabchannel. Note that the "beta" table is really beta,
// not alpha + beta, as with the tabchannel.
int i
float x,dx,alpha,beta
dx = (xmax - xmin)/xdivs
x = xmin
for (i = 0 ; i <= {xdivs} ; i = i + 1)
if (x < EREST_ACT + 0.05)
alpha = {exp {53.872*(x - EREST_ACT) - 0.66835}}/0.018975
beta = 2000*{exp {(EREST_ACT + 0.0065 - x)/0.027}} - alpha
else
alpha = 2000*{exp {(EREST_ACT + 0.0065 - x)/0.027}}
beta = 0.0
end
setfield K_C/X alpha->table[{i}] {alpha}
setfield K_C/X beta->table[{i}] {beta}
x = x + dx
end
// Expand the tables to 3000 entries to use without interpolation
setfield K_C/X alpha->calc_mode 0 beta->calc_mode 0
call K_C/X TABFILL alpha 3000 0
call K_C/X TABFILL beta 3000 0
addmsg K_C/tab K_C MULTGATE output 1
addmsg K_C/X K_C MULTGATE m 1
addfield K_C addmsg1
addfield K_C addmsg2
setfield K_C \
addmsg1 "../Ca_conc tab INPUT Ca" \
addmsg2 ".. X VOLTAGE Vm"
end
/*
The MULTGATE message is used to give the vdep_channel the value of the
activation variable and the power to which it should be raised. As the
tabgate and table are sub-elements of the channel, they and their messages
to the channel will accompany it when copies are made. However, we also
need to provide for messages which link to external elements. The message
which sends the Ca concentration to the table and the one which sends the
compartment membrane potential to the tabgate are stored in environment
variables of the channel, so that they may be found by the cell reader.
*/
// The remaining channels are straightforward tabchannel implementations
//========================================================================
// Tabchannel Na Hippocampal cell channel
//========================================================================
function make_Na
if ({exists Na})
return
end
create tabchannel Na
setfield ^ \
Ek {ENA} \ // V
Gbar { 300 * SOMA_A } \ // S
Ik 0 \ // A
Gk 0 \ // S
Xpower 2 \
Ypower 1 \
Zpower 0
setupalpha Na X {320e3 * (0.0131 + EREST_ACT)} \
-320e3 -1.0 {-1.0 * (0.0131 + EREST_ACT) } -0.004 \
{-280e3 * (0.0401 + EREST_ACT) } \
280e3 -1.0 {-1.0 * (0.0401 + EREST_ACT) } 5.0e-3
setupalpha Na Y 128.0 0.0 0.0 \
{-1.0 * (0.017 + EREST_ACT)} 0.018 \
4.0e3 0.0 1.0 {-1.0 * (0.040 + EREST_ACT) } -5.0e-3
end
//========================================================================
// Tabchannel K(DR) Hippocampal cell channel
//========================================================================
function make_K_DR
if ({exists K_DR})
return
end
create tabchannel K_DR
setfield ^ \
Ek {EK} \ // V
Gbar { 150 * SOMA_A } \ // S
Ik 0 \ // A
Gk 0 \ // S
Xpower 1 \
Ypower 0 \
Zpower 0
setupalpha K_DR X \
{16e3 * (0.0351 + EREST_ACT)} \ // AA
-16e3 \ // AB
-1.0 \ // AC
{-1.0 * (0.0351 + EREST_ACT) } \ // AD
-0.005 \ // AF
250 \ // BA
0.0 \ // BB
0.0 \ // BC
{-1.0 * (0.02 + EREST_ACT)} \ // BD
0.04 // BF
end
//========================================================================
// Tabchannel K(A) Hippocampal cell channel
//========================================================================
function make_K_A
if ({exists K_A})
return
end
create tabchannel K_A
setfield ^ \
Ek {EK} \ // V
Gbar { 50 * SOMA_A } \ // S
Ik 0 \ // A
Gk 0 \ // S
Xpower 1 \
Ypower 1 \
Zpower 0
setupalpha K_A X {20e3 * (0.0131 + EREST_ACT)} \
-20e3 -1.0 {-1.0 * (0.0131 + EREST_ACT) } -0.01 \
{-17.5e3 * (0.0401 + EREST_ACT) } \
17.5e3 -1.0 {-1.0 * (0.0401 + EREST_ACT) } 0.01
setupalpha K_A Y 1.6 0.0 0.0 \
{0.013 - EREST_ACT} 0.018 \
50.0 0.0 1.0 {-1.0 * (0.0101 + EREST_ACT) } -0.005
end
|