File: pcm.c

package info (click to toggle)
genesisplusgx 1.7.4%2Bgit20160410-1
  • links: PTS
  • area: non-free
  • in suites: buster, stretch
  • size: 8,460 kB
  • ctags: 8,372
  • sloc: ansic: 95,843; makefile: 348; sh: 3
file content (435 lines) | stat: -rw-r--r-- 11,869 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/***************************************************************************************
 *  Genesis Plus
 *  PCM sound chip (315-5476A) (RF5C164 compatible)
 *
 *  Copyright (C) 2012-2014  Eke-Eke (Genesis Plus GX)
 *
 *  Redistribution and use of this code or any derivative works are permitted
 *  provided that the following conditions are met:
 *
 *   - Redistributions may not be sold, nor may they be used in a commercial
 *     product or activity.
 *
 *   - Redistributions that are modified from the original source must include the
 *     complete source code, including the source code for all components used by a
 *     binary built from the modified sources. However, as a special exception, the
 *     source code distributed need not include anything that is normally distributed
 *     (in either source or binary form) with the major components (compiler, kernel,
 *     and so on) of the operating system on which the executable runs, unless that
 *     component itself accompanies the executable.
 *
 *   - Redistributions must reproduce the above copyright notice, this list of
 *     conditions and the following disclaimer in the documentation and/or other
 *     materials provided with the distribution.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************************/
#include "shared.h"

#define PCM_SCYCLES_RATIO (384 * 4)

#define pcm scd.pcm_hw

void pcm_init(double clock, int samplerate)
{
  /* PCM chip is running at original rate and is synchronized with SUB-CPU  */
  /* Chip output is resampled to desired rate using Blip Buffer. */
  blip_set_rates(snd.blips[1][0], clock / PCM_SCYCLES_RATIO, samplerate);
  blip_set_rates(snd.blips[1][1], clock / PCM_SCYCLES_RATIO, samplerate);
}

void pcm_reset(void)
{
  /* reset chip & clear external RAM */
  memset(&pcm, 0, sizeof(pcm_t));

  /* reset default bank */
  pcm.bank = pcm.ram;

  /* reset channels stereo panning */
  pcm.chan[0].pan = 0xff;
  pcm.chan[1].pan = 0xff;
  pcm.chan[2].pan = 0xff;
  pcm.chan[3].pan = 0xff;
  pcm.chan[4].pan = 0xff;
  pcm.chan[5].pan = 0xff;
  pcm.chan[6].pan = 0xff;
  pcm.chan[7].pan = 0xff;

  /* reset master clocks counter */
  pcm.cycles = 0;

  /* clear blip buffers */
  blip_clear(snd.blips[1][0]);
  blip_clear(snd.blips[1][1]);
}

int pcm_context_save(uint8 *state)
{
  uint8 tmp8;
  int bufferptr = 0;

  tmp8 = (pcm.bank - pcm.ram) >> 12;

  save_param(pcm.chan, sizeof(pcm.chan));
  save_param(pcm.out, sizeof(pcm.out));
  save_param(&tmp8, 1);
  save_param(&pcm.enabled, sizeof(pcm.enabled));
  save_param(&pcm.status, sizeof(pcm.status));
  save_param(&pcm.index, sizeof(pcm.index));
  save_param(pcm.ram, sizeof(pcm.ram));

  return bufferptr;
}

int pcm_context_load(uint8 *state)
{
  uint8 tmp8;
  int bufferptr = 0;

  load_param(pcm.chan, sizeof(pcm.chan));
  load_param(pcm.out, sizeof(pcm.out));

  load_param(&tmp8, 1);
  pcm.bank = &pcm.ram[(tmp8 & 0x0f) << 12];

  load_param(&pcm.enabled, sizeof(pcm.enabled));
  load_param(&pcm.status, sizeof(pcm.status));
  load_param(&pcm.index, sizeof(pcm.index));
  load_param(pcm.ram, sizeof(pcm.ram));

  return bufferptr;
}

void pcm_run(unsigned int length)
{
#ifdef LOG_PCM
  error("[%d][%d]run %d PCM samples (from %d)\n", v_counter, s68k.cycles, length, pcm.cycles);
#endif
  /* check if PCM chip is running */
  if (pcm.enabled)
  {
    int i, j, l, r;
  
    /* generate PCM samples */
    for (i=0; i<length; i++)
    {
      /* clear output */
      l = r = 0;

      /* run eight PCM channels */
      for (j=0; j<8; j++)
      {
        /* check if channel is enabled */
        if (pcm.status & (1 << j))
        {
          /* read from current WAVE RAM address */
          short data = pcm.ram[(pcm.chan[j].addr >> 11) & 0xffff];

          /* loop data ? */
          if (data == 0xff)
          {
            /* reset WAVE RAM address */
            pcm.chan[j].addr = pcm.chan[j].ls.w << 11;

            /* read again from WAVE RAM address */
            data = pcm.ram[pcm.chan[j].ls.w];
          }
          else
          {
            /* increment WAVE RAM address */
            pcm.chan[j].addr += pcm.chan[j].fd.w;
          }

          /* infinite loop should not output any data */
          if (data != 0xff)
          {
            /* check sign bit (output centered around 0) */
            if (data & 0x80)
            {
              /* PCM data is positive */
              data = data & 0x7f;
            }
            else
            {
              /* PCM data is negative */
              data = -(data & 0x7f);
            }

            /* multiply PCM data with ENV & stereo PAN data then add to L/R outputs (14.5 fixed point) */
            l += ((data * pcm.chan[j].env * (pcm.chan[j].pan & 0x0F)) >> 5);
            r += ((data * pcm.chan[j].env * (pcm.chan[j].pan >> 4)) >> 5);
          }
        }
      }

      /* limiter */
      if (l < -32768) l = -32768;
      else if (l > 32767) l = 32767;
      if (r < -32768) r = -32768;
      else if (r > 32767) r = 32767;

      /* check if PCM left output changed */
      if (pcm.out[0] != l)
      {
        blip_add_delta_fast(snd.blips[1][0], i, l-pcm.out[0]);
        pcm.out[0] = l;
      }

      /* check if PCM right output changed */
      if (pcm.out[1] != r)
      {
        blip_add_delta_fast(snd.blips[1][1], i, r-pcm.out[1]);
        pcm.out[1] = r;
      }
    }
  }
  else
  {
    /* check if PCM left output changed */
    if (pcm.out[0])
    {
      blip_add_delta_fast(snd.blips[1][0], 0, -pcm.out[0]);
      pcm.out[0] = 0;
    }

    /* check if PCM right output changed */
    if (pcm.out[1])
    {
      blip_add_delta_fast(snd.blips[1][1], 0, -pcm.out[1]);
      pcm.out[1] = 0;
    }
  }

  /* end of blip buffer frame */
  blip_end_frame(snd.blips[1][0], length);
  blip_end_frame(snd.blips[1][1], length);

  /* update PCM master clock counter */
  pcm.cycles += length * PCM_SCYCLES_RATIO;
}

void pcm_update(unsigned int samples)
{
  /* get number of internal clocks (samples) needed */
  unsigned int clocks = blip_clocks_needed(snd.blips[1][0], samples);

  /* run PCM chip */
  if (clocks > 0)
  {
    pcm_run(clocks);
  }

  /* reset PCM master clocks counter */
  pcm.cycles = 0;
}

void pcm_write(unsigned int address, unsigned char data)
{
  /* synchronize PCM chip with SUB-CPU */
  int clocks = s68k.cycles - pcm.cycles;
  if (clocks > 0)
  {
    /* number of internal clocks (samples) to run */
    clocks = (clocks + PCM_SCYCLES_RATIO - 1) / PCM_SCYCLES_RATIO;
    pcm_run(clocks);
  }

#ifdef LOG_PCM
  error("[%d][%d]PCM write %x -> 0x%02x (%X)\n", v_counter, s68k.cycles, address, data, s68k.pc);
#endif

  /* external RAM is mapped to $1000-$1FFF */
  if (address >= 0x1000)
  {
    /* 4K bank access */
    pcm.bank[address & 0xfff] = data;
    return;
  }

  /* internal area si mapped to $0000-$0FFF */
  switch (address)
  {
    case 0x00: /* ENV register */
    {
      /* update channel ENV multiplier */
      pcm.chan[pcm.index].env = data;
      return;
    }

    case 0x01: /* PAN register */
    {
      /* update channel stereo panning value */
      pcm.chan[pcm.index].pan = data;
      return;
    }

    case 0x02: /* FD register (LSB) */
    {
      /* update channel WAVE RAM address increment LSB */
      pcm.chan[pcm.index].fd.byte.l = data;
      return;
    }

    case 0x03: /* FD register (MSB) */
    {
      /* update channel WAVE RAM address increment MSB */
      pcm.chan[pcm.index].fd.byte.h = data;
      return;
    }

    case 0x04: /* LS register (LSB) */
    {
      /* update channel WAVE RAM loop address LSB */
      pcm.chan[pcm.index].ls.byte.l = data;
      return;
    }

    case 0x05: /* LS register (MSB) */
    {
      /* update channel WAVE RAM loop address MSB */
      pcm.chan[pcm.index].ls.byte.h = data;
      return;
    }

    case 0x06: /* ST register */
    {
      /* update channel WAVE RAM start address (16.11 fixed point) */
      pcm.chan[pcm.index].st = data << (8 + 11);

      /* reload WAVE RAM address if channel is OFF */
      if (!(pcm.status & (1 << pcm.index)))
      {
        pcm.chan[pcm.index].addr = pcm.chan[pcm.index].st;
      }
      return;
    }

    case 0x07: /* CTRL register */
    {
      if (data & 0x40)
      {
        /* channel selection (0-7) */
        pcm.index = data & 0x07;
      }
      else
      {
        /* external RAM bank selection (16 x 4K) */
        pcm.bank = &pcm.ram[(data & 0x0f) << 12];
      }

      /* update PCM chip status (bit 7) */
      pcm.enabled = data & 0x80;
      return;
    }

    case 0x08: /* ON/OFF register */
    {
      /* update PCM channels status */
      pcm.status = ~data;

      /* reload WAVE RAM address pointers when channels are OFF */
      if (data & 0x01) pcm.chan[0].addr = pcm.chan[0].st;
      if (data & 0x02) pcm.chan[1].addr = pcm.chan[1].st;
      if (data & 0x04) pcm.chan[2].addr = pcm.chan[2].st;
      if (data & 0x08) pcm.chan[3].addr = pcm.chan[3].st;
      if (data & 0x10) pcm.chan[4].addr = pcm.chan[4].st;
      if (data & 0x20) pcm.chan[5].addr = pcm.chan[5].st;
      if (data & 0x40) pcm.chan[6].addr = pcm.chan[6].st;
      if (data & 0x80) pcm.chan[7].addr = pcm.chan[7].st;
      return;
    }

    default:
    {
      /* illegal access */
      return;
    }
  }
}

unsigned char pcm_read(unsigned int address)
{
  /* synchronize PCM chip with SUB-CPU */
  int clocks = s68k.cycles - pcm.cycles;
  if (clocks > 0)
  {
    /* number of internal clocks (samples) to run */
    clocks = (clocks + PCM_SCYCLES_RATIO - 1) / PCM_SCYCLES_RATIO;
    pcm_run(clocks);
  }

#ifdef LOG_PCM
  error("[%d][%d]PCM read (%X)\n", v_counter, s68k.cycles, address, s68k.pc);
#endif

  /* external RAM (TODO: verify if possible to read, some docs claim it's not !) */
  if (address >= 0x1000)
  {
    /* 4K bank access */
    return pcm.bank[address & 0xfff];
  }

  /* read WAVE RAM address pointers */
  if ((address >= 0x10) && (address < 0x20))
  {
    int index = (address >> 1) & 0x07;

    if (address & 1)
    {
      return (pcm.chan[index].addr >> (11 + 8)) & 0xff;
    }
    else
    {
      return (pcm.chan[index].addr >> 11) & 0xff;
    }
  }

  /* illegal access */
  return 0xff;
}

void pcm_ram_dma_w(unsigned int words)
{
  uint16 data;

  /* CDC buffer source address */
  uint16 src_index = cdc.dac.w & 0x3ffe;
  
  /* PCM-RAM destination address*/
  uint16 dst_index = (scd.regs[0x0a>>1].w << 2) & 0xffe;
  
  /* update DMA destination address */
  scd.regs[0x0a>>1].w += (words >> 1);

  /* update DMA source address */
  cdc.dac.w += (words << 1);

  /* DMA transfer */
  while (words--)
  {
    /* read 16-bit word from CDC buffer */
    data = *(uint16 *)(cdc.ram + src_index);

    /* write 16-bit word to PCM RAM (endianness does not matter since PCM RAM is always accessed as byte)*/
    *(uint16 *)(pcm.bank + dst_index) = data ;

    /* increment CDC buffer source address */
    src_index = (src_index + 2) & 0x3ffe;

    /* increment PCM-RAM destination address */
    dst_index = (dst_index + 2) & 0xffe;
  }
}