File: sn76489.c

package info (click to toggle)
genesisplusgx 1.7.4%2Bgit20160410-1
  • links: PTS
  • area: non-free
  • in suites: buster, stretch
  • size: 8,460 kB
  • ctags: 8,372
  • sloc: ansic: 95,843; makefile: 348; sh: 3
file content (446 lines) | stat: -rw-r--r-- 12,774 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
/* 
    SN76489 emulation
    by Maxim in 2001 and 2002
    converted from my original Delphi implementation

    I'm a C newbie so I'm sure there are loads of stupid things
    in here which I'll come back to some day and redo

    Includes:
    - Super-high quality tone channel "oversampling" by calculating fractional positions on transitions
    - Noise output pattern reverse engineered from actual SMS output
    - Volume levels taken from actual SMS output

    07/08/04  Charles MacDonald
    Modified for use with SMS Plus:
    - Added support for multiple PSG chips.
    - Added reset/config/update routines.
    - Added context management routines.
    - Removed SN76489_GetValues().
    - Removed some unused variables.

   25/04/07 Eke-Eke (Genesis Plus GX)
    - Removed stereo GG support (unused)
    - Made SN76489_Update outputs 16bits mono samples
    - Replaced volume table with VGM plugin's one

   05/01/09 Eke-Eke (Genesis Plus GX)
    - Modified Cut-Off frequency (according to Steve Snake: http://www.smspower.org/forums/viewtopic.php?t=1746)

   24/08/10 Eke-Eke (Genesis Plus GX)
    - Removed multichip support (unused)
    - Removed alternate volume table, panning & mute support (unused)
    - Removed configurable Feedback and Shift Register Width (always use Sega ones)
    - Added linear resampling using Blip Buffer (based on Blargg's implementation: http://www.smspower.org/forums/viewtopic.php?t=11376)

   01/09/12 Eke-Eke (Genesis Plus GX)
    - Added generic Blip-Buffer support internally, using common Master Clock as timebase
    - Re-added stereo GG support
    - Re-added configurable Feedback and Shift Register Width
    - Rewrote core with various optimizations
*/

#include "shared.h"

#define PSG_MCYCLES_RATIO (16 * 15)

/* Initial state of shift register */
#define NoiseInitialState 0x8000

/* Value below which PSG does not output  */
/*#define PSG_CUTOFF 0x6*/
#define PSG_CUTOFF 0x1

/* original Texas Instruments TMS SN76489AN (rev. A) used in SG-1000, SC-3000H & SF-7000 computers */
#define FB_DISCRETE 0x0006
#define SRW_DISCRETE  15

/* SN76489AN clone integrated in Sega's VDP chips (315-5124, 315-5246, 315-5313, Game Gear) */
#define FB_SEGAVDP 0x0009
#define SRW_SEGAVDP 16

typedef struct
{
  /* Configuration */
  int PreAmp[4][2];       /* stereo channels pre-amplification ratio (%) */
  int NoiseFeedback;
  int SRWidth;

  /* PSG registers: */
  int Registers[8];       /* Tone, vol x4 */
  int LatchedRegister;
  int NoiseShiftRegister;
  int NoiseFreq;          /* Noise channel signal generator frequency */

  /* Output calculation variables */
  int ToneFreqVals[4];    /* Frequency register values (counters) */
  int ToneFreqPos[4];     /* Frequency channel flip-flops */
  int Channel[4][2];      /* current amplitude of each (stereo) channel */
  int ChanOut[4][2];      /* current output value of each (stereo) channel */

  /* Internal M-clock counter */
  unsigned long clocks;

} SN76489_Context;

static const uint16 PSGVolumeValues[16] =
{
  /* These values are taken from a real SMS2's output */
  /*{892,892,892,760,623,497,404,323,257,198,159,123,96,75,60,0}, */
  /* I can't remember why 892... :P some scaling I did at some point */
  /* these values are true volumes for 2dB drops at each step (multiply previous by 10^-0.1) */
  1516,1205,957,760,603,479,381,303,240,191,152,120,96,76,60,0
};

static SN76489_Context SN76489;

void SN76489_Init(int type)
{
  int i;

  for (i=0; i<4; i++)
  {
    SN76489.PreAmp[i][0] = 100;
    SN76489.PreAmp[i][1] = 100;
  }

  if (type == SN_DISCRETE)
  {
    SN76489.NoiseFeedback = FB_DISCRETE;
    SN76489.SRWidth = SRW_DISCRETE;
  }
  else
  {
    SN76489.NoiseFeedback = FB_SEGAVDP;
    SN76489.SRWidth = SRW_SEGAVDP;
  }
}

void SN76489_Reset()
{
  int i;

  for(i = 0; i <= 3; i++)
  {
    /* Initialise PSG state */
    SN76489.Registers[2*i] = 1; /* tone freq=1 */
    SN76489.Registers[2*i+1] = 0xf; /* vol=off */

    /* Set counters to 0 */
    SN76489.ToneFreqVals[i] = 0;

    /* Set flip-flops to 1 */
    SN76489.ToneFreqPos[i] = 1;

    /* Clear stereo channels amplitude */
    SN76489.Channel[i][0] = 0;
    SN76489.Channel[i][1] = 0;

   /* Clear stereo channel outputs in delta buffer */
    SN76489.ChanOut[i][0] = 0;
    SN76489.ChanOut[i][1] = 0;
  }

  /* Initialise latched register index */
  SN76489.LatchedRegister = 0;

  /* Initialise noise generator */
  SN76489.NoiseShiftRegister=NoiseInitialState;
  SN76489.NoiseFreq = 0x10;

  /* Reset internal M-cycle counter */
  SN76489.clocks = 0;
}

void *SN76489_GetContextPtr(void)
{
  return (uint8 *)&SN76489;
}

int SN76489_GetContextSize(void)
{
  return sizeof(SN76489_Context);
}

/* Updates tone amplitude in delta buffer. Call whenever amplitude might have changed. */
INLINE void UpdateToneAmplitude(int i, int time)
{
  int delta;

  /* left output */
  delta = (SN76489.Channel[i][0] * SN76489.ToneFreqPos[i]) - SN76489.ChanOut[i][0];
  if (delta != 0)
  {
    SN76489.ChanOut[i][0] += delta;
    blip_add_delta_fast(snd.blips[0][0], time, delta);
  }

  /* right output */
  delta = (SN76489.Channel[i][1] * SN76489.ToneFreqPos[i]) - SN76489.ChanOut[i][1];
  if (delta != 0)
  {
    SN76489.ChanOut[i][1] += delta;
    blip_add_delta_fast(snd.blips[0][1], time, delta);
  }
}

/* Updates noise amplitude in delta buffer. Call whenever amplitude might have changed. */
INLINE void UpdateNoiseAmplitude(int time)
{
  int delta;

  /* left output */
  delta = (SN76489.Channel[3][0] * ( SN76489.NoiseShiftRegister & 0x1 )) - SN76489.ChanOut[3][0];
  if (delta != 0)
  {
    SN76489.ChanOut[3][0] += delta;
    blip_add_delta_fast(snd.blips[0][0], time, delta);
  }

  /* right output */
  delta = (SN76489.Channel[3][1] * ( SN76489.NoiseShiftRegister & 0x1 )) - SN76489.ChanOut[3][1];
  if (delta != 0)
  {
    SN76489.ChanOut[3][1] += delta;
    blip_add_delta_fast(snd.blips[0][1], time, delta);
  }
}

/* Runs tone channel for clock_length clocks */
static void RunTone(int i, int clocks)
{
  int time;

  /* Update in case a register changed etc. */
  UpdateToneAmplitude(i, SN76489.clocks);

  /* Time of next transition */
  time = SN76489.ToneFreqVals[i];

  /* Process any transitions that occur within clocks we're running */
  while (time < clocks)
  {
    if (SN76489.Registers[i*2]>PSG_CUTOFF) {
      /* Flip the flip-flop */
      SN76489.ToneFreqPos[i] = -SN76489.ToneFreqPos[i];
    } else {
      /* stuck value */
      SN76489.ToneFreqPos[i] = 1;
    }
    UpdateToneAmplitude(i, time);

    /* Advance to time of next transition */
    time += SN76489.Registers[i*2] * PSG_MCYCLES_RATIO;
  }
  
  /* Update channel tone counter */
  SN76489.ToneFreqVals[i] = time;
}

/* Runs noise channel for clock_length clocks */
static void RunNoise(int clocks)
{
  int time;

  /* Noise channel: match to tone2 if in slave mode */
  int NoiseFreq = SN76489.NoiseFreq;
  if (NoiseFreq == 0x80)
  {
    NoiseFreq = SN76489.Registers[2*2];
    SN76489.ToneFreqVals[3] = SN76489.ToneFreqVals[2];
  }

  /* Update in case a register changed etc. */
  UpdateNoiseAmplitude(SN76489.clocks);

  /* Time of next transition */
  time = SN76489.ToneFreqVals[3];

  /* Process any transitions that occur within clocks we're running */
  while (time < clocks)
  {
    /* Flip the flip-flop */
    SN76489.ToneFreqPos[3] = -SN76489.ToneFreqPos[3];
    if (SN76489.ToneFreqPos[3] == 1)
    {
      /* On the positive edge of the square wave (only once per cycle) */
      int Feedback = SN76489.NoiseShiftRegister;
      if ( SN76489.Registers[6] & 0x4 )
      {
        /* White noise */
        /* Calculate parity of fed-back bits for feedback */
        /* Do some optimised calculations for common (known) feedback values */
        /* If two bits fed back, I can do Feedback=(nsr & fb) && (nsr & fb ^ fb) */
        /* since that's (one or more bits set) && (not all bits set) */
        Feedback = ((Feedback & SN76489.NoiseFeedback) && ((Feedback & SN76489.NoiseFeedback) ^ SN76489.NoiseFeedback));
      }
      else    /* Periodic noise */
        Feedback = Feedback & 1;

      SN76489.NoiseShiftRegister = (SN76489.NoiseShiftRegister >> 1) | (Feedback << (SN76489.SRWidth - 1));
      UpdateNoiseAmplitude(time);
    }

    /* Advance to time of next transition */
    time += NoiseFreq * PSG_MCYCLES_RATIO;
  }

  /* Update channel tone counter */
  SN76489.ToneFreqVals[3] = time;
}

static void SN76489_RunUntil(unsigned int clocks)
{
  int i;

  /* Run noise first, since it might use current value of third tone frequency counter */
  RunNoise(clocks);

  /* Run tone channels */
  for (i=0; i<3; ++i)
  {
    RunTone(i, clocks);
  }
}

void SN76489_Config(unsigned int clocks, int preAmp, int boostNoise, int stereo)
{
  int i;

  /* cycle-accurate Game Gear stereo */
  if (clocks > SN76489.clocks)
  {
    /* Run chip until current timestamp */
    SN76489_RunUntil(clocks);

    /* Update internal M-cycle counter */
    SN76489.clocks += ((clocks - SN76489.clocks + PSG_MCYCLES_RATIO - 1) / PSG_MCYCLES_RATIO) * PSG_MCYCLES_RATIO;
  }

  for (i=0; i<4; i++)
  {
    /* stereo channel pre-amplification */
    SN76489.PreAmp[i][0] = preAmp * ((stereo >> (i + 4)) & 1);
    SN76489.PreAmp[i][1] = preAmp * ((stereo >> (i + 0)) & 1);

    /* noise channel boost */
    if (i == 3)
    {
      SN76489.PreAmp[3][0] = SN76489.PreAmp[3][0] << boostNoise;
      SN76489.PreAmp[3][1] = SN76489.PreAmp[3][1] << boostNoise;
    }

    /* update stereo channel amplitude */
    SN76489.Channel[i][0]= (PSGVolumeValues[SN76489.Registers[i*2 + 1]] * SN76489.PreAmp[i][0]) / 100;
    SN76489.Channel[i][1]= (PSGVolumeValues[SN76489.Registers[i*2 + 1]] * SN76489.PreAmp[i][1]) / 100;
  }
}

void SN76489_Update(unsigned int clocks)
{
  int i;

  if (clocks > SN76489.clocks)
  {
    /* Run chip until current timestamp */
    SN76489_RunUntil(clocks);

    /* Update internal M-cycle counter */
    SN76489.clocks += ((clocks - SN76489.clocks + PSG_MCYCLES_RATIO - 1) / PSG_MCYCLES_RATIO) * PSG_MCYCLES_RATIO;
  }

  /* Adjust internal M-cycle counter for next frame */
  SN76489.clocks -= clocks;

	/* Adjust channel time counters for new frame */
	for (i=0; i<4; ++i)
	{
		SN76489.ToneFreqVals[i] -= clocks;
	}
}

void SN76489_Write(unsigned int clocks, unsigned int data)
{
  unsigned int index;

  if (clocks > SN76489.clocks)
  {
    /* run chip until current timestamp */
    SN76489_RunUntil(clocks);

    /* update internal M-cycle counter */
    SN76489.clocks += ((clocks - SN76489.clocks + PSG_MCYCLES_RATIO - 1) / PSG_MCYCLES_RATIO) * PSG_MCYCLES_RATIO;
  }

  if (data & 0x80)
  {
    /* latch byte  %1 cc t dddd */
    SN76489.LatchedRegister = index = (data >> 4) & 0x07;
  }
  else
  {
    /* restore latched register index */
    index = SN76489.LatchedRegister;
  }

  switch (index)
  {
    case 0:
    case 2:
    case 4: /* Tone Channels frequency */
    {
      if (data & 0x80)
      {
        /* Data byte  %1 cc t dddd */
        SN76489.Registers[index] = (SN76489.Registers[index] & 0x3f0) | (data & 0xf);
      }
      else
      {
        /* Data byte  %0 - dddddd */
        SN76489.Registers[index] = (SN76489.Registers[index] & 0x00f) | ((data & 0x3f) << 4);
      }

      /* zero frequency behaves the same as a value of 1 */
      if (SN76489.Registers[index] == 0)
      {
        SN76489.Registers[index] = 1;
      }
      break;
    }

    case 1:
    case 3:
    case 5: /* Tone Channels attenuation */
    {
      data &= 0x0f;
      SN76489.Registers[index] = data;
      data = PSGVolumeValues[data];
      index >>= 1;
      SN76489.Channel[index][0] = (data * SN76489.PreAmp[index][0]) / 100;
      SN76489.Channel[index][1] = (data * SN76489.PreAmp[index][1]) / 100;
      break;
    }

    case 6: /* Noise control */
    {
      SN76489.Registers[6] = data & 0x0f;

      /* reset shift register */
      SN76489.NoiseShiftRegister = NoiseInitialState;

      /* set noise signal generator frequency */
      SN76489.NoiseFreq = 0x10 << (data&0x3);
      break;
    }

    case 7: /* Noise attenuation */
    {
      data &= 0x0f;
      SN76489.Registers[7] = data;
      data = PSGVolumeValues[data];
      SN76489.Channel[3][0] = (data * SN76489.PreAmp[3][0]) / 100;
      SN76489.Channel[3][1] = (data * SN76489.PreAmp[3][1]) / 100;
      break;
    }
  }
}