1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
|
/*
**
** File: ym2413.c - software implementation of YM2413
** FM sound generator type OPLL
**
** Copyright (C) 2002 Jarek Burczynski
**
** Version 1.0
**
**
to do:
- make sure of the sinus amplitude bits
- make sure of the EG resolution bits (looks like the biggest
modulation index generated by the modulator is 123, 124 = no modulation)
- find proper algorithm for attack phase of EG
- tune up instruments ROM
- support sample replay in test mode (it is NOT as simple as setting bit 0
in register 0x0f and using register 0x10 for sample data).
Which games use this feature ?
*/
/** EkeEke (2011): removed multiple chips support, cleaned code & added FM board interface for Genesis Plus GX **/
#include "shared.h"
#define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */
#define EG_SH 16 /* 16.16 fixed point (EG timing) */
#define LFO_SH 24 /* 8.24 fixed point (LFO calculations) */
#define FREQ_MASK ((1<<FREQ_SH)-1)
/* envelope output entries */
#define ENV_BITS 10
#define ENV_LEN (1<<ENV_BITS)
#define ENV_STEP (128.0/ENV_LEN)
#define MAX_ATT_INDEX ((1<<(ENV_BITS-2))-1) /*255*/
#define MIN_ATT_INDEX (0)
/* sinwave entries */
#define SIN_BITS 10
#define SIN_LEN (1<<SIN_BITS)
#define SIN_MASK (SIN_LEN-1)
#define TL_RES_LEN (256) /* 8 bits addressing (real chip) */
/* register number to channel number , slot offset */
#define SLOT1 0
#define SLOT2 1
/* Envelope Generator phases */
#define EG_DMP 5
#define EG_ATT 4
#define EG_DEC 3
#define EG_SUS 2
#define EG_REL 1
#define EG_OFF 0
typedef struct
{
UINT32 ar; /* attack rate: AR<<2 */
UINT32 dr; /* decay rate: DR<<2 */
UINT32 rr; /* release rate:RR<<2 */
UINT8 KSR; /* key scale rate */
UINT8 ksl; /* keyscale level */
UINT8 ksr; /* key scale rate: kcode>>KSR */
UINT8 mul; /* multiple: mul_tab[ML] */
/* Phase Generator */
UINT32 phase; /* frequency counter */
UINT32 freq; /* frequency counter step */
UINT8 fb_shift; /* feedback shift value */
INT32 op1_out[2]; /* slot1 output for feedback */
/* Envelope Generator */
UINT8 eg_type; /* percussive/nonpercussive mode */
UINT8 state; /* phase type */
UINT32 TL; /* total level: TL << 2 */
INT32 TLL; /* adjusted now TL */
INT32 volume; /* envelope counter */
UINT32 sl; /* sustain level: sl_tab[SL] */
UINT8 eg_sh_dp; /* (dump state) */
UINT8 eg_sel_dp; /* (dump state) */
UINT8 eg_sh_ar; /* (attack state) */
UINT8 eg_sel_ar; /* (attack state) */
UINT8 eg_sh_dr; /* (decay state) */
UINT8 eg_sel_dr; /* (decay state) */
UINT8 eg_sh_rr; /* (release state for non-perc.) */
UINT8 eg_sel_rr; /* (release state for non-perc.) */
UINT8 eg_sh_rs; /* (release state for perc.mode) */
UINT8 eg_sel_rs; /* (release state for perc.mode) */
UINT32 key; /* 0 = KEY OFF, >0 = KEY ON */
/* LFO */
UINT32 AMmask; /* LFO Amplitude Modulation enable mask */
UINT8 vib; /* LFO Phase Modulation enable flag (active high)*/
/* waveform select */
unsigned int wavetable;
} YM2413_OPLL_SLOT;
typedef struct
{
YM2413_OPLL_SLOT SLOT[2];
/* phase generator state */
UINT32 block_fnum; /* block+fnum */
UINT32 fc; /* Freq. freqement base */
UINT32 ksl_base; /* KeyScaleLevel Base step */
UINT8 kcode; /* key code (for key scaling) */
UINT8 sus; /* sus on/off (release speed in percussive mode) */
} YM2413_OPLL_CH;
/* chip state */
typedef struct {
YM2413_OPLL_CH P_CH[9]; /* OPLL chips have 9 channels */
UINT8 instvol_r[9]; /* instrument/volume (or volume/volume in percussive mode) */
UINT32 eg_cnt; /* global envelope generator counter */
UINT32 eg_timer; /* global envelope generator counter works at frequency = chipclock/72 */
UINT32 eg_timer_add; /* step of eg_timer */
UINT32 eg_timer_overflow; /* envelope generator timer overlfows every 1 sample (on real chip) */
UINT8 rhythm; /* Rhythm mode */
/* LFO */
UINT32 lfo_am_cnt;
UINT32 lfo_am_inc;
UINT32 lfo_pm_cnt;
UINT32 lfo_pm_inc;
UINT32 noise_rng; /* 23 bit noise shift register */
UINT32 noise_p; /* current noise 'phase' */
UINT32 noise_f; /* current noise period */
/* instrument settings */
/*
0-user instrument
1-15 - fixed instruments
16 -bass drum settings
17,18 - other percussion instruments
*/
UINT8 inst_tab[19][8];
UINT32 fn_tab[1024]; /* fnumber->increment counter */
UINT8 address; /* address register */
UINT8 status; /* status flag */
double clock; /* master clock (Hz) */
int rate; /* sampling rate (Hz) */
} YM2413;
/* key scale level */
/* table is 3dB/octave, DV converts this into 6dB/octave */
/* 0.1875 is bit 0 weight of the envelope counter (volume) expressed in the 'decibel' scale */
#define DV (0.1875/1.0)
static const UINT32 ksl_tab[8*16]=
{
/* OCT 0 */
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
/* OCT 1 */
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
/* OCT 2 */
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
/* OCT 3 */
0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
/* OCT 4 */
0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
10.875/DV,11.250/DV,11.625/DV,12.000/DV,
/* OCT 5 */
0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
9.000/DV,10.125/DV,10.875/DV,11.625/DV,
12.000/DV,12.750/DV,13.125/DV,13.500/DV,
13.875/DV,14.250/DV,14.625/DV,15.000/DV,
/* OCT 6 */
0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
12.000/DV,13.125/DV,13.875/DV,14.625/DV,
15.000/DV,15.750/DV,16.125/DV,16.500/DV,
16.875/DV,17.250/DV,17.625/DV,18.000/DV,
/* OCT 7 */
0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
15.000/DV,16.125/DV,16.875/DV,17.625/DV,
18.000/DV,18.750/DV,19.125/DV,19.500/DV,
19.875/DV,20.250/DV,20.625/DV,21.000/DV
};
#undef DV
/* sustain level table (3dB per step) */
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,45 (dB)*/
#define SC(db) (UINT32) ( db * (1.0/ENV_STEP) )
static const UINT32 sl_tab[16]={
SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(15)
};
#undef SC
#define RATE_STEPS (8)
static const unsigned char eg_inc[15*RATE_STEPS]={
/*cycle:0 1 2 3 4 5 6 7*/
/* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..12 0 (increment by 0 or 1) */
/* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..12 1 */
/* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..12 2 */
/* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..12 3 */
/* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 13 0 (increment by 1) */
/* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 13 1 */
/* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 13 2 */
/* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 13 3 */
/* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 14 0 (increment by 2) */
/* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 14 1 */
/*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 14 2 */
/*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 14 3 */
/*12 */ 4,4, 4,4, 4,4, 4,4, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 4) */
/*13 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 2, 15 3 for attack */
/*14 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */
};
#define O(a) (a*RATE_STEPS)
/*note that there is no O(13) in this table - it's directly in the code */
static const unsigned char eg_rate_select[16+64+16]={ /* Envelope Generator rates (16 + 64 rates + 16 RKS) */
/* 16 infinite time rates */
O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
/* rates 00-12 */
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
/* rate 13 */
O( 4),O( 5),O( 6),O( 7),
/* rate 14 */
O( 8),O( 9),O(10),O(11),
/* rate 15 */
O(12),O(12),O(12),O(12),
/* 16 dummy rates (same as 15 3) */
O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
};
#undef O
/*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 */
/*shift 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0 */
/*mask 8191, 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0 */
#define O(a) (a*1)
static const unsigned char eg_rate_shift[16+64+16]={ /* Envelope Generator counter shifts (16 + 64 rates + 16 RKS) */
/* 16 infinite time rates */
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
/* rates 00-12 */
O(13),O(13),O(13),O(13),
O(12),O(12),O(12),O(12),
O(11),O(11),O(11),O(11),
O(10),O(10),O(10),O(10),
O( 9),O( 9),O( 9),O( 9),
O( 8),O( 8),O( 8),O( 8),
O( 7),O( 7),O( 7),O( 7),
O( 6),O( 6),O( 6),O( 6),
O( 5),O( 5),O( 5),O( 5),
O( 4),O( 4),O( 4),O( 4),
O( 3),O( 3),O( 3),O( 3),
O( 2),O( 2),O( 2),O( 2),
O( 1),O( 1),O( 1),O( 1),
/* rate 13 */
O( 0),O( 0),O( 0),O( 0),
/* rate 14 */
O( 0),O( 0),O( 0),O( 0),
/* rate 15 */
O( 0),O( 0),O( 0),O( 0),
/* 16 dummy rates (same as 15 3) */
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
};
#undef O
/* multiple table */
#define ML 2
static const UINT8 mul_tab[16]= {
/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,10,12,12,15,15 */
0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
};
#undef ML
/* TL_TAB_LEN is calculated as:
* 11 - sinus amplitude bits (Y axis)
* 2 - sinus sign bit (Y axis)
* TL_RES_LEN - sinus resolution (X axis)
*/
#define TL_TAB_LEN (11*2*TL_RES_LEN)
static signed int tl_tab[TL_TAB_LEN];
#define ENV_QUIET (TL_TAB_LEN>>5)
/* sin waveform table in 'decibel' scale */
/* two waveforms on OPLL type chips */
static unsigned int sin_tab[SIN_LEN * 2];
/* LFO Amplitude Modulation table (verified on real YM3812)
27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples
Length: 210 elements.
Each of the elements has to be repeated
exactly 64 times (on 64 consecutive samples).
The whole table takes: 64 * 210 = 13440 samples.
We use data>>1, until we find what it really is on real chip...
*/
#define LFO_AM_TAB_ELEMENTS 210
static const UINT8 lfo_am_table[LFO_AM_TAB_ELEMENTS] = {
0,0,0,0,0,0,0,
1,1,1,1,
2,2,2,2,
3,3,3,3,
4,4,4,4,
5,5,5,5,
6,6,6,6,
7,7,7,7,
8,8,8,8,
9,9,9,9,
10,10,10,10,
11,11,11,11,
12,12,12,12,
13,13,13,13,
14,14,14,14,
15,15,15,15,
16,16,16,16,
17,17,17,17,
18,18,18,18,
19,19,19,19,
20,20,20,20,
21,21,21,21,
22,22,22,22,
23,23,23,23,
24,24,24,24,
25,25,25,25,
26,26,26,
25,25,25,25,
24,24,24,24,
23,23,23,23,
22,22,22,22,
21,21,21,21,
20,20,20,20,
19,19,19,19,
18,18,18,18,
17,17,17,17,
16,16,16,16,
15,15,15,15,
14,14,14,14,
13,13,13,13,
12,12,12,12,
11,11,11,11,
10,10,10,10,
9,9,9,9,
8,8,8,8,
7,7,7,7,
6,6,6,6,
5,5,5,5,
4,4,4,4,
3,3,3,3,
2,2,2,2,
1,1,1,1
};
/* LFO Phase Modulation table (verified on real YM2413) */
static const INT8 lfo_pm_table[8*8] = {
/* FNUM2/FNUM = 0 00xxxxxx (0x0000) */
0, 0, 0, 0, 0, 0, 0, 0,
/* FNUM2/FNUM = 0 01xxxxxx (0x0040) */
1, 0, 0, 0,-1, 0, 0, 0,
/* FNUM2/FNUM = 0 10xxxxxx (0x0080) */
2, 1, 0,-1,-2,-1, 0, 1,
/* FNUM2/FNUM = 0 11xxxxxx (0x00C0) */
3, 1, 0,-1,-3,-1, 0, 1,
/* FNUM2/FNUM = 1 00xxxxxx (0x0100) */
4, 2, 0,-2,-4,-2, 0, 2,
/* FNUM2/FNUM = 1 01xxxxxx (0x0140) */
5, 2, 0,-2,-5,-2, 0, 2,
/* FNUM2/FNUM = 1 10xxxxxx (0x0180) */
6, 3, 0,-3,-6,-3, 0, 3,
/* FNUM2/FNUM = 1 11xxxxxx (0x01C0) */
7, 3, 0,-3,-7,-3, 0, 3,
};
/* This is not 100% perfect yet but very close */
/*
- multi parameters are 100% correct (instruments and drums)
- LFO PM and AM enable are 100% correct
- waveform DC and DM select are 100% correct
*/
static unsigned char table[19][8] = {
/* MULT MULT modTL DcDmFb AR/DR AR/DR SL/RR SL/RR */
/* 0 1 2 3 4 5 6 7 */
{0x49, 0x4c, 0x4c, 0x12, 0x00, 0x00, 0x00, 0x00 }, /* 0 */
{0x61, 0x61, 0x1e, 0x17, 0xf0, 0x78, 0x00, 0x17 }, /* 1 */
{0x13, 0x41, 0x1e, 0x0d, 0xd7, 0xf7, 0x13, 0x13 }, /* 2 */
{0x13, 0x01, 0x99, 0x04, 0xf2, 0xf4, 0x11, 0x23 }, /* 3 */
{0x21, 0x61, 0x1b, 0x07, 0xaf, 0x64, 0x40, 0x27 }, /* 4 */
/*{0x22, 0x21, 0x1e, 0x09, 0xf0, 0x76, 0x08, 0x28 }, */ /* 5 */
{0x22, 0x21, 0x1e, 0x06, 0xf0, 0x75, 0x08, 0x18 }, /* 5 */
/*{0x31, 0x22, 0x16, 0x09, 0x90, 0x7f, 0x00, 0x08 }, */ /* 6 */
{0x31, 0x22, 0x16, 0x05, 0x90, 0x71, 0x00, 0x13 }, /* 6 */
{0x21, 0x61, 0x1d, 0x07, 0x82, 0x80, 0x10, 0x17 }, /* 7 */
{0x23, 0x21, 0x2d, 0x16, 0xc0, 0x70, 0x07, 0x07 }, /* 8 */
{0x61, 0x61, 0x1b, 0x06, 0x64, 0x65, 0x10, 0x17 }, /* 9 */
/* {0x61, 0x61, 0x0c, 0x08, 0x85, 0xa0, 0x79, 0x07 }, */ /* A */
{0x61, 0x61, 0x0c, 0x18, 0x85, 0xf0, 0x70, 0x07 }, /* A */
{0x23, 0x01, 0x07, 0x11, 0xf0, 0xa4, 0x00, 0x22 }, /* B */
{0x97, 0xc1, 0x24, 0x07, 0xff, 0xf8, 0x22, 0x12 }, /* C */
/* {0x61, 0x10, 0x0c, 0x08, 0xf2, 0xc4, 0x40, 0xc8 }, */ /* D */
{0x61, 0x10, 0x0c, 0x05, 0xf2, 0xf4, 0x40, 0x44 }, /* D */
{0x01, 0x01, 0x55, 0x03, 0xf3, 0x92, 0xf3, 0xf3 }, /* E */
{0x61, 0x41, 0x89, 0x03, 0xf1, 0xf4, 0xf0, 0x13 }, /* F */
/* drum instruments definitions */
/* MULTI MULTI modTL xxx AR/DR AR/DR SL/RR SL/RR */
/* 0 1 2 3 4 5 6 7 */
{0x01, 0x01, 0x16, 0x00, 0xfd, 0xf8, 0x2f, 0x6d },/* BD(multi verified, modTL verified, mod env - verified(close), carr. env verifed) */
{0x01, 0x01, 0x00, 0x00, 0xd8, 0xd8, 0xf9, 0xf8 },/* HH(multi verified), SD(multi not used) */
{0x05, 0x01, 0x00, 0x00, 0xf8, 0xba, 0x49, 0x55 },/* TOM(multi,env verified), TOP CYM(multi verified, env verified) */
};
static signed int output[2];
static UINT32 LFO_AM;
static INT32 LFO_PM;
/* emulated chip */
static YM2413 ym2413;
/* advance LFO to next sample */
INLINE void advance_lfo(void)
{
/* LFO */
ym2413.lfo_am_cnt += ym2413.lfo_am_inc;
if (ym2413.lfo_am_cnt >= (LFO_AM_TAB_ELEMENTS<<LFO_SH) ) /* lfo_am_table is 210 elements long */
ym2413.lfo_am_cnt -= (LFO_AM_TAB_ELEMENTS<<LFO_SH);
LFO_AM = lfo_am_table[ ym2413.lfo_am_cnt >> LFO_SH ] >> 1;
ym2413.lfo_pm_cnt += ym2413.lfo_pm_inc;
LFO_PM = (ym2413.lfo_pm_cnt>>LFO_SH) & 7;
}
/* advance to next sample */
INLINE void advance(void)
{
YM2413_OPLL_CH *CH;
YM2413_OPLL_SLOT *op;
unsigned int i;
/* Envelope Generator */
ym2413.eg_timer += ym2413.eg_timer_add;
while (ym2413.eg_timer >= ym2413.eg_timer_overflow)
{
ym2413.eg_timer -= ym2413.eg_timer_overflow;
ym2413.eg_cnt++;
for (i=0; i<9*2; i++)
{
CH = &ym2413.P_CH[i>>1];
op = &CH->SLOT[i&1];
switch(op->state)
{
case EG_DMP: /* dump phase */
/*dump phase is performed by both operators in each channel*/
/*when CARRIER envelope gets down to zero level,
** phases in BOTH opearators are reset (at the same time ?)
*/
if ( !(ym2413.eg_cnt & ((1<<op->eg_sh_dp)-1) ) )
{
op->volume += eg_inc[op->eg_sel_dp + ((ym2413.eg_cnt>>op->eg_sh_dp)&7)];
if ( op->volume >= MAX_ATT_INDEX )
{
op->volume = MAX_ATT_INDEX;
op->state = EG_ATT;
/* restart Phase Generator */
op->phase = 0;
}
}
break;
case EG_ATT: /* attack phase */
if ( !(ym2413.eg_cnt & ((1<<op->eg_sh_ar)-1) ) )
{
op->volume += (~op->volume *
(eg_inc[op->eg_sel_ar + ((ym2413.eg_cnt>>op->eg_sh_ar)&7)])
) >>2;
if (op->volume <= MIN_ATT_INDEX)
{
op->volume = MIN_ATT_INDEX;
op->state = EG_DEC;
}
}
break;
case EG_DEC: /* decay phase */
if ( !(ym2413.eg_cnt & ((1<<op->eg_sh_dr)-1) ) )
{
op->volume += eg_inc[op->eg_sel_dr + ((ym2413.eg_cnt>>op->eg_sh_dr)&7)];
if ( op->volume >= op->sl )
op->state = EG_SUS;
}
break;
case EG_SUS: /* sustain phase */
/* this is important behaviour:
one can change percusive/non-percussive modes on the fly and
the chip will remain in sustain phase - verified on real YM3812 */
if(op->eg_type) /* non-percussive mode (sustained tone) */
{
/* do nothing */
}
else /* percussive mode */
{
/* during sustain phase chip adds Release Rate (in percussive mode) */
if ( !(ym2413.eg_cnt & ((1<<op->eg_sh_rr)-1) ) )
{
op->volume += eg_inc[op->eg_sel_rr + ((ym2413.eg_cnt>>op->eg_sh_rr)&7)];
if ( op->volume >= MAX_ATT_INDEX )
op->volume = MAX_ATT_INDEX;
}
/* else do nothing in sustain phase */
}
break;
case EG_REL: /* release phase */
/* exclude modulators in melody channels from performing anything in this mode*/
/* allowed are only carriers in melody mode and rhythm slots in rhythm mode */
/*This table shows which operators and on what conditions are allowed to perform EG_REL:
(a) - always perform EG_REL
(n) - never perform EG_REL
(r) - perform EG_REL in Rhythm mode ONLY
0: 0 (n), 1 (a)
1: 2 (n), 3 (a)
2: 4 (n), 5 (a)
3: 6 (n), 7 (a)
4: 8 (n), 9 (a)
5: 10(n), 11(a)
6: 12(r), 13(a)
7: 14(r), 15(a)
8: 16(r), 17(a)
*/
if ( (i&1) || ((ym2413.rhythm&0x20) && (i>=12)) )/* exclude modulators */
{
if(op->eg_type) /* non-percussive mode (sustained tone) */
/*this is correct: use RR when SUS = OFF*/
/*and use RS when SUS = ON*/
{
if (CH->sus)
{
if ( !(ym2413.eg_cnt & ((1<<op->eg_sh_rs)-1) ) )
{
op->volume += eg_inc[op->eg_sel_rs + ((ym2413.eg_cnt>>op->eg_sh_rs)&7)];
if ( op->volume >= MAX_ATT_INDEX )
{
op->volume = MAX_ATT_INDEX;
op->state = EG_OFF;
}
}
}
else
{
if ( !(ym2413.eg_cnt & ((1<<op->eg_sh_rr)-1) ) )
{
op->volume += eg_inc[op->eg_sel_rr + ((ym2413.eg_cnt>>op->eg_sh_rr)&7)];
if ( op->volume >= MAX_ATT_INDEX )
{
op->volume = MAX_ATT_INDEX;
op->state = EG_OFF;
}
}
}
}
else /* percussive mode */
{
if ( !(ym2413.eg_cnt & ((1<<op->eg_sh_rs)-1) ) )
{
op->volume += eg_inc[op->eg_sel_rs + ((ym2413.eg_cnt>>op->eg_sh_rs)&7)];
if ( op->volume >= MAX_ATT_INDEX )
{
op->volume = MAX_ATT_INDEX;
op->state = EG_OFF;
}
}
}
}
break;
default:
break;
}
}
}
for (i=0; i<9*2; i++)
{
CH = &ym2413.P_CH[i/2];
op = &CH->SLOT[i&1];
/* Phase Generator */
if(op->vib)
{
UINT8 block;
unsigned int fnum_lfo = 8*((CH->block_fnum&0x01c0) >> 6);
unsigned int block_fnum = CH->block_fnum * 2;
signed int lfo_fn_table_index_offset = lfo_pm_table[LFO_PM + fnum_lfo ];
if (lfo_fn_table_index_offset) /* LFO phase modulation active */
{
block_fnum += lfo_fn_table_index_offset;
block = (block_fnum&0x1c00) >> 10;
op->phase += (ym2413.fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul;
}
else /* LFO phase modulation = zero */
{
op->phase += op->freq;
}
}
else /* LFO phase modulation disabled for this operator */
{
op->phase += op->freq;
}
}
/* The Noise Generator of the YM3812 is 23-bit shift register.
* Period is equal to 2^23-2 samples.
* Register works at sampling frequency of the chip, so output
* can change on every sample.
*
* Output of the register and input to the bit 22 is:
* bit0 XOR bit14 XOR bit15 XOR bit22
*
* Simply use bit 22 as the noise output.
*/
ym2413.noise_p += ym2413.noise_f;
i = ym2413.noise_p >> FREQ_SH; /* number of events (shifts of the shift register) */
ym2413.noise_p &= FREQ_MASK;
while (i)
{
/*
UINT32 j;
j = ( (chip->noise_rng) ^ (chip->noise_rng>>14) ^ (chip->noise_rng>>15) ^ (chip->noise_rng>>22) ) & 1;
chip->noise_rng = (j<<22) | (chip->noise_rng>>1);
*/
/*
Instead of doing all the logic operations above, we
use a trick here (and use bit 0 as the noise output).
The difference is only that the noise bit changes one
step ahead. This doesn't matter since we don't know
what is real state of the noise_rng after the reset.
*/
if (ym2413.noise_rng & 1) ym2413.noise_rng ^= 0x800302;
ym2413.noise_rng >>= 1;
i--;
}
}
INLINE signed int op_calc(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab)
{
UINT32 p = (env<<5) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + (pm<<17))) >> FREQ_SH ) & SIN_MASK) ];
if (p >= TL_TAB_LEN)
return 0;
return tl_tab[p];
}
INLINE signed int op_calc1(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab)
{
UINT32 p = (env<<5) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + pm)) >> FREQ_SH ) & SIN_MASK) ];
if (p >= TL_TAB_LEN)
return 0;
return tl_tab[p];
}
#define volume_calc(OP) ((OP)->TLL + ((UINT32)(OP)->volume) + (LFO_AM & (OP)->AMmask))
/* calculate output */
INLINE void chan_calc( YM2413_OPLL_CH *CH )
{
YM2413_OPLL_SLOT *SLOT;
unsigned int env;
signed int out;
signed int phase_modulation; /* phase modulation input (SLOT 2) */
/* SLOT 1 */
SLOT = &CH->SLOT[SLOT1];
env = volume_calc(SLOT);
out = SLOT->op1_out[0] + SLOT->op1_out[1];
SLOT->op1_out[0] = SLOT->op1_out[1];
phase_modulation = SLOT->op1_out[0];
SLOT->op1_out[1] = 0;
if( env < ENV_QUIET )
{
if (!SLOT->fb_shift)
out = 0;
SLOT->op1_out[1] = op_calc1(SLOT->phase, env, (out<<SLOT->fb_shift), SLOT->wavetable );
}
/* SLOT 2 */
SLOT++;
env = volume_calc(SLOT);
if( env < ENV_QUIET )
{
output[0] += op_calc(SLOT->phase, env, phase_modulation, SLOT->wavetable);
}
}
/*
operators used in the rhythm sounds generation process:
Envelope Generator:
channel operator register number Bass High Snare Tom Top
/ slot number TL ARDR SLRR Wave Drum Hat Drum Tom Cymbal
6 / 0 12 50 70 90 f0 +
6 / 1 15 53 73 93 f3 +
7 / 0 13 51 71 91 f1 +
7 / 1 16 54 74 94 f4 +
8 / 0 14 52 72 92 f2 +
8 / 1 17 55 75 95 f5 +
Phase Generator:
channel operator register number Bass High Snare Tom Top
/ slot number MULTIPLE Drum Hat Drum Tom Cymbal
6 / 0 12 30 +
6 / 1 15 33 +
7 / 0 13 31 + + +
7 / 1 16 34 ----- n o t u s e d -----
8 / 0 14 32 +
8 / 1 17 35 + +
channel operator register number Bass High Snare Tom Top
number number BLK/FNUM2 FNUM Drum Hat Drum Tom Cymbal
6 12,15 B6 A6 +
7 13,16 B7 A7 + + +
8 14,17 B8 A8 + + +
*/
/* calculate rhythm */
INLINE void rhythm_calc( YM2413_OPLL_CH *CH, unsigned int noise )
{
YM2413_OPLL_SLOT *SLOT;
signed int out;
unsigned int env;
signed int phase_modulation; /* phase modulation input (SLOT 2) */
/* Bass Drum (verified on real YM3812):
- depends on the channel 6 'connect' register:
when connect = 0 it works the same as in normal (non-rhythm) mode (op1->op2->out)
when connect = 1 _only_ operator 2 is present on output (op2->out), operator 1 is ignored
- output sample always is multiplied by 2
*/
/* SLOT 1 */
SLOT = &CH[6].SLOT[SLOT1];
env = volume_calc(SLOT);
out = SLOT->op1_out[0] + SLOT->op1_out[1];
SLOT->op1_out[0] = SLOT->op1_out[1];
phase_modulation = SLOT->op1_out[0];
SLOT->op1_out[1] = 0;
if( env < ENV_QUIET )
{
if (!SLOT->fb_shift)
out = 0;
SLOT->op1_out[1] = op_calc1(SLOT->phase, env, (out<<SLOT->fb_shift), SLOT->wavetable );
}
/* SLOT 2 */
SLOT++;
env = volume_calc(SLOT);
if( env < ENV_QUIET )
output[1] += op_calc(SLOT->phase, env, phase_modulation, SLOT->wavetable);
/* Phase generation is based on: */
/* HH (13) channel 7->slot 1 combined with channel 8->slot 2 (same combination as TOP CYMBAL but different output phases) */
/* SD (16) channel 7->slot 1 */
/* TOM (14) channel 8->slot 1 */
/* TOP (17) channel 7->slot 1 combined with channel 8->slot 2 (same combination as HIGH HAT but different output phases) */
/* Envelope generation based on: */
/* HH channel 7->slot1 */
/* SD channel 7->slot2 */
/* TOM channel 8->slot1 */
/* TOP channel 8->slot2 */
/* The following formulas can be well optimized.
I leave them in direct form for now (in case I've missed something).
*/
/* High Hat (verified on real YM3812) */
env = volume_calc(&CH[7].SLOT[SLOT1]);
if( env < ENV_QUIET )
{
/* high hat phase generation:
phase = d0 or 234 (based on frequency only)
phase = 34 or 2d0 (based on noise)
*/
/* base frequency derived from operator 1 in channel 7 */
unsigned char bit7 = ((CH[7].SLOT[SLOT1].phase>>FREQ_SH)>>7)&1;
unsigned char bit3 = ((CH[7].SLOT[SLOT1].phase>>FREQ_SH)>>3)&1;
unsigned char bit2 = ((CH[7].SLOT[SLOT1].phase>>FREQ_SH)>>2)&1;
unsigned char res1 = (bit2 ^ bit7) | bit3;
/* when res1 = 0 phase = 0x000 | 0xd0; */
/* when res1 = 1 phase = 0x200 | (0xd0>>2); */
UINT32 phase = res1 ? (0x200|(0xd0>>2)) : 0xd0;
/* enable gate based on frequency of operator 2 in channel 8 */
unsigned char bit5e= ((CH[8].SLOT[SLOT2].phase>>FREQ_SH)>>5)&1;
unsigned char bit3e= ((CH[8].SLOT[SLOT2].phase>>FREQ_SH)>>3)&1;
unsigned char res2 = (bit3e | bit5e);
/* when res2 = 0 pass the phase from calculation above (res1); */
/* when res2 = 1 phase = 0x200 | (0xd0>>2); */
if (res2)
phase = (0x200|(0xd0>>2));
/* when phase & 0x200 is set and noise=1 then phase = 0x200|0xd0 */
/* when phase & 0x200 is set and noise=0 then phase = 0x200|(0xd0>>2), ie no change */
if (phase&0x200)
{
if (noise)
phase = 0x200|0xd0;
}
else
/* when phase & 0x200 is clear and noise=1 then phase = 0xd0>>2 */
/* when phase & 0x200 is clear and noise=0 then phase = 0xd0, ie no change */
{
if (noise)
phase = 0xd0>>2;
}
output[1] += op_calc(phase<<FREQ_SH, env, 0, CH[7].SLOT[SLOT1].wavetable);
}
/* Snare Drum (verified on real YM3812) */
env = volume_calc(&CH[7].SLOT[SLOT2]);
if( env < ENV_QUIET )
{
/* base frequency derived from operator 1 in channel 7 */
unsigned char bit8 = ((CH[7].SLOT[SLOT1].phase>>FREQ_SH)>>8)&1;
/* when bit8 = 0 phase = 0x100; */
/* when bit8 = 1 phase = 0x200; */
UINT32 phase = bit8 ? 0x200 : 0x100;
/* Noise bit XOR'es phase by 0x100 */
/* when noisebit = 0 pass the phase from calculation above */
/* when noisebit = 1 phase ^= 0x100; */
/* in other words: phase ^= (noisebit<<8); */
if (noise)
phase ^= 0x100;
output[1] += op_calc(phase<<FREQ_SH, env, 0, CH[7].SLOT[SLOT2].wavetable);
}
/* Tom Tom (verified on real YM3812) */
env = volume_calc(&CH[8].SLOT[SLOT1]);
if( env < ENV_QUIET )
output[1] += op_calc(CH[8].SLOT[SLOT1].phase, env, 0, CH[8].SLOT[SLOT1].wavetable);
/* Top Cymbal (verified on real YM2413) */
env = volume_calc(&CH[8].SLOT[SLOT2]);
if( env < ENV_QUIET )
{
/* base frequency derived from operator 1 in channel 7 */
unsigned char bit7 = ((CH[7].SLOT[SLOT1].phase>>FREQ_SH)>>7)&1;
unsigned char bit3 = ((CH[7].SLOT[SLOT1].phase>>FREQ_SH)>>3)&1;
unsigned char bit2 = ((CH[7].SLOT[SLOT1].phase>>FREQ_SH)>>2)&1;
unsigned char res1 = (bit2 ^ bit7) | bit3;
/* when res1 = 0 phase = 0x000 | 0x100; */
/* when res1 = 1 phase = 0x200 | 0x100; */
UINT32 phase = res1 ? 0x300 : 0x100;
/* enable gate based on frequency of operator 2 in channel 8 */
unsigned char bit5e= ((CH[8].SLOT[SLOT2].phase>>FREQ_SH)>>5)&1;
unsigned char bit3e= ((CH[8].SLOT[SLOT2].phase>>FREQ_SH)>>3)&1;
unsigned char res2 = (bit3e | bit5e);
/* when res2 = 0 pass the phase from calculation above (res1); */
/* when res2 = 1 phase = 0x200 | 0x100; */
if (res2)
phase = 0x300;
output[1] += op_calc(phase<<FREQ_SH, env, 0, CH[8].SLOT[SLOT2].wavetable);
}
}
/* generic table initialize */
static int init_tables(void)
{
signed int i,x;
signed int n;
double o,m;
for (x=0; x<TL_RES_LEN; x++)
{
m = (1<<16) / pow(2, (x+1) * (ENV_STEP/4.0) / 8.0);
m = floor(m);
/* we never reach (1<<16) here due to the (x+1) */
/* result fits within 16 bits at maximum */
n = (int)m; /* 16 bits here */
n >>= 4; /* 12 bits here */
if (n&1) /* round to nearest */
n = (n>>1)+1;
else
n = n>>1;
/* 11 bits here (rounded) */
tl_tab[ x*2 + 0 ] = n;
tl_tab[ x*2 + 1 ] = -tl_tab[ x*2 + 0 ];
for (i=1; i<11; i++)
{
tl_tab[ x*2+0 + i*2*TL_RES_LEN ] = tl_tab[ x*2+0 ]>>i;
tl_tab[ x*2+1 + i*2*TL_RES_LEN ] = -tl_tab[ x*2+0 + i*2*TL_RES_LEN ];
}
}
for (i=0; i<SIN_LEN; i++)
{
/* non-standard sinus */
m = sin( ((i*2)+1) * M_PI / SIN_LEN ); /* checked against the real chip */
/* we never reach zero here due to ((i*2)+1) */
if (m>0.0)
o = 8*log(1.0/m)/log(2); /* convert to 'decibels' */
else
o = 8*log(-1.0/m)/log(2); /* convert to 'decibels' */
o = o / (ENV_STEP/4);
n = (int)(2.0*o);
if (n&1) /* round to nearest */
n = (n>>1)+1;
else
n = n>>1;
/* waveform 0: standard sinus */
sin_tab[ i ] = n*2 + (m>=0.0? 0: 1 );
/* waveform 1: __ __ */
/* / \____/ \____*/
/* output only first half of the sinus waveform (positive one) */
if (i & (1<<(SIN_BITS-1)) )
sin_tab[1*SIN_LEN+i] = TL_TAB_LEN;
else
sin_tab[1*SIN_LEN+i] = sin_tab[i];
}
return 1;
}
static void OPLL_initalize(void)
{
int i;
/* YM2413 always running at original frequency */
double freqbase = 1.0;
/* make fnumber -> increment counter table */
for( i = 0 ; i < 1024; i++ )
{
/* OPLL (YM2413) phase increment counter = 18bit */
ym2413.fn_tab[i] = (UINT32)( (double)i * 64 * freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */
}
/* Amplitude modulation: 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples */
/* One entry from LFO_AM_TABLE lasts for 64 samples */
ym2413.lfo_am_inc = (1.0 / 64.0 ) * (1<<LFO_SH) * freqbase;
/* Vibrato: 8 output levels (triangle waveform); 1 level takes 1024 samples */
ym2413.lfo_pm_inc = (1.0 / 1024.0) * (1<<LFO_SH) * freqbase;
/* Noise generator: a step takes 1 sample */
ym2413.noise_f = (1.0 / 1.0) * (1<<FREQ_SH) * freqbase;
ym2413.eg_timer_add = (1<<EG_SH) * freqbase;
ym2413.eg_timer_overflow = ( 1 ) * (1<<EG_SH);
}
INLINE void KEY_ON(YM2413_OPLL_SLOT *SLOT, UINT32 key_set)
{
if( !SLOT->key )
{
/* do NOT restart Phase Generator (verified on real YM2413)*/
/* phase -> Dump */
SLOT->state = EG_DMP;
}
SLOT->key |= key_set;
}
INLINE void KEY_OFF(YM2413_OPLL_SLOT *SLOT, UINT32 key_clr)
{
if( SLOT->key )
{
SLOT->key &= key_clr;
if( !SLOT->key )
{
/* phase -> Release */
if (SLOT->state>EG_REL)
SLOT->state = EG_REL;
}
}
}
/* update phase increment counter of operator (also update the EG rates if necessary) */
INLINE void CALC_FCSLOT(YM2413_OPLL_CH *CH,YM2413_OPLL_SLOT *SLOT)
{
int ksr;
UINT32 SLOT_rs;
UINT32 SLOT_dp;
/* (frequency) phase increment counter */
SLOT->freq = CH->fc * SLOT->mul;
ksr = CH->kcode >> SLOT->KSR;
if( SLOT->ksr != ksr )
{
SLOT->ksr = ksr;
/* calculate envelope generator rates */
if ((SLOT->ar + SLOT->ksr) < 16+62)
{
SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
}
else
{
SLOT->eg_sh_ar = 0;
SLOT->eg_sel_ar = 13*RATE_STEPS;
}
SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ];
SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ];
SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ];
SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ];
}
if (CH->sus)
SLOT_rs = 16 + (5<<2);
else
SLOT_rs = 16 + (7<<2);
SLOT->eg_sh_rs = eg_rate_shift [SLOT_rs + SLOT->ksr ];
SLOT->eg_sel_rs = eg_rate_select[SLOT_rs + SLOT->ksr ];
SLOT_dp = 16 + (13<<2);
SLOT->eg_sh_dp = eg_rate_shift [SLOT_dp + SLOT->ksr ];
SLOT->eg_sel_dp = eg_rate_select[SLOT_dp + SLOT->ksr ];
}
/* set multi,am,vib,EG-TYP,KSR,mul */
INLINE void set_mul(int slot,int v)
{
YM2413_OPLL_CH *CH = &ym2413.P_CH[slot/2];
YM2413_OPLL_SLOT *SLOT = &CH->SLOT[slot&1];
SLOT->mul = mul_tab[v&0x0f];
SLOT->KSR = (v&0x10) ? 0 : 2;
SLOT->eg_type = (v&0x20);
SLOT->vib = (v&0x40);
SLOT->AMmask = (v&0x80) ? ~0 : 0;
CALC_FCSLOT(CH,SLOT);
}
/* set ksl, tl */
INLINE void set_ksl_tl(int chan,int v)
{
YM2413_OPLL_CH *CH = &ym2413.P_CH[chan];
/* modulator */
YM2413_OPLL_SLOT *SLOT = &CH->SLOT[SLOT1];
int ksl = v>>6; /* 0 / 1.5 / 3.0 / 6.0 dB/OCT */
SLOT->ksl = ksl ? 3-ksl : 31;
SLOT->TL = (v&0x3f)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
}
/* set ksl , waveforms, feedback */
INLINE void set_ksl_wave_fb(int chan,int v)
{
YM2413_OPLL_CH *CH = &ym2413.P_CH[chan];
/* modulator */
YM2413_OPLL_SLOT *SLOT = &CH->SLOT[SLOT1];
SLOT->wavetable = ((v&0x08)>>3)*SIN_LEN;
SLOT->fb_shift = (v&7) ? (v&7) + 8 : 0;
/*carrier*/
SLOT = &CH->SLOT[SLOT2];
SLOT->wavetable = ((v&0x10)>>4)*SIN_LEN;
v >>= 6; /* 0 / 1.5 / 3.0 / 6.0 dB/OCT */
SLOT->ksl = v ? 3-v : 31;
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
}
/* set attack rate & decay rate */
INLINE void set_ar_dr(int slot,int v)
{
YM2413_OPLL_CH *CH = &ym2413.P_CH[slot/2];
YM2413_OPLL_SLOT *SLOT = &CH->SLOT[slot&1];
SLOT->ar = (v>>4) ? 16 + ((v>>4) <<2) : 0;
if ((SLOT->ar + SLOT->ksr) < 16+62)
{
SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
}
else
{
SLOT->eg_sh_ar = 0;
SLOT->eg_sel_ar = 13*RATE_STEPS;
}
SLOT->dr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ];
SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ];
}
/* set sustain level & release rate */
INLINE void set_sl_rr(int slot,int v)
{
YM2413_OPLL_CH *CH = &ym2413.P_CH[slot/2];
YM2413_OPLL_SLOT *SLOT = &CH->SLOT[slot&1];
SLOT->sl = sl_tab[ v>>4 ];
SLOT->rr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ];
SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ];
}
static void load_instrument(UINT32 chan, UINT32 slot, UINT8* inst )
{
set_mul(slot, inst[0]);
set_mul(slot+1, inst[1]);
set_ksl_tl(chan, inst[2]);
set_ksl_wave_fb(chan, inst[3]);
set_ar_dr(slot, inst[4]);
set_ar_dr(slot+1, inst[5]);
set_sl_rr(slot, inst[6]);
set_sl_rr(slot+1, inst[7]);
}
static void update_instrument_zero(UINT8 r)
{
UINT8* inst = &ym2413.inst_tab[0][0]; /* point to user instrument */
UINT32 chan;
UINT32 chan_max = 9;
if (ym2413.rhythm & 0x20)
chan_max=6;
switch(r&7)
{
case 0:
for (chan=0; chan<chan_max; chan++)
{
if ((ym2413.instvol_r[chan]&0xf0)==0)
{
set_mul(chan*2, inst[0]);
}
}
break;
case 1:
for (chan=0; chan<chan_max; chan++)
{
if ((ym2413.instvol_r[chan]&0xf0)==0)
{
set_mul(chan*2+1, inst[1]);
}
}
break;
case 2:
for (chan=0; chan<chan_max; chan++)
{
if ((ym2413.instvol_r[chan]&0xf0)==0)
{
set_ksl_tl(chan, inst[2]);
}
}
break;
case 3:
for (chan=0; chan<chan_max; chan++)
{
if ((ym2413.instvol_r[chan]&0xf0)==0)
{
set_ksl_wave_fb(chan, inst[3]);
}
}
break;
case 4:
for (chan=0; chan<chan_max; chan++)
{
if ((ym2413.instvol_r[chan]&0xf0)==0)
{
set_ar_dr(chan*2, inst[4]);
}
}
break;
case 5:
for (chan=0; chan<chan_max; chan++)
{
if ((ym2413.instvol_r[chan]&0xf0)==0)
{
set_ar_dr(chan*2+1, inst[5]);
}
}
break;
case 6:
for (chan=0; chan<chan_max; chan++)
{
if ((ym2413.instvol_r[chan]&0xf0)==0)
{
set_sl_rr(chan*2, inst[6]);
}
}
break;
case 7:
for (chan=0; chan<chan_max; chan++)
{
if ((ym2413.instvol_r[chan]&0xf0)==0)
{
set_sl_rr(chan*2+1, inst[7]);
}
}
break;
}
}
/* write a value v to register r on chip chip */
static void OPLLWriteReg(int r, int v)
{
YM2413_OPLL_CH *CH;
YM2413_OPLL_SLOT *SLOT;
/* adjust bus to 8 bits */
r &= 0xff;
v &= 0xff;
switch(r&0xf0)
{
case 0x00: /* 00-0f:control */
{
switch(r&0x0f)
{
case 0x00: /* AM/VIB/EGTYP/KSR/MULTI (modulator) */
case 0x01: /* AM/VIB/EGTYP/KSR/MULTI (carrier) */
case 0x02: /* Key Scale Level, Total Level (modulator) */
case 0x03: /* Key Scale Level, carrier waveform, modulator waveform, Feedback */
case 0x04: /* Attack, Decay (modulator) */
case 0x05: /* Attack, Decay (carrier) */
case 0x06: /* Sustain, Release (modulator) */
case 0x07: /* Sustain, Release (carrier) */
{
ym2413.inst_tab[0][r] = v;
update_instrument_zero(r);
break;
}
case 0x0e: /* x, x, r,bd,sd,tom,tc,hh */
{
if(v&0x20)
{
/* rhythm OFF to ON */
if ((ym2413.rhythm&0x20)==0)
{
/* Load instrument settings for channel seven(chan=6 since we're zero based). (Bass drum) */
load_instrument(6, 12, &ym2413.inst_tab[16][0]);
/* Load instrument settings for channel eight. (High hat and snare drum) */
load_instrument(7, 14, &ym2413.inst_tab[17][0]);
CH = &ym2413.P_CH[7];
SLOT = &CH->SLOT[SLOT1]; /* modulator envelope is HH */
SLOT->TL = ((ym2413.instvol_r[7]>>4)<<2)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
/* Load instrument settings for channel nine. (Tom-tom and top cymbal) */
load_instrument(8, 16, &ym2413.inst_tab[18][0]);
CH = &ym2413.P_CH[8];
SLOT = &CH->SLOT[SLOT1]; /* modulator envelope is TOM */
SLOT->TL = ((ym2413.instvol_r[8]>>4)<<2)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
}
/* BD key on/off */
if(v&0x10)
{
KEY_ON (&ym2413.P_CH[6].SLOT[SLOT1], 2);
KEY_ON (&ym2413.P_CH[6].SLOT[SLOT2], 2);
}
else
{
KEY_OFF(&ym2413.P_CH[6].SLOT[SLOT1],~2);
KEY_OFF(&ym2413.P_CH[6].SLOT[SLOT2],~2);
}
/* HH key on/off */
if(v&0x01) KEY_ON (&ym2413.P_CH[7].SLOT[SLOT1], 2);
else KEY_OFF(&ym2413.P_CH[7].SLOT[SLOT1],~2);
/* SD key on/off */
if(v&0x08) KEY_ON (&ym2413.P_CH[7].SLOT[SLOT2], 2);
else KEY_OFF(&ym2413.P_CH[7].SLOT[SLOT2],~2);
/* TOM key on/off */
if(v&0x04) KEY_ON (&ym2413.P_CH[8].SLOT[SLOT1], 2);
else KEY_OFF(&ym2413.P_CH[8].SLOT[SLOT1],~2);
/* TOP-CY key on/off */
if(v&0x02) KEY_ON (&ym2413.P_CH[8].SLOT[SLOT2], 2);
else KEY_OFF(&ym2413.P_CH[8].SLOT[SLOT2],~2);
}
else
{
/* rhythm ON to OFF */
if (ym2413.rhythm&0x20)
{
/* Load instrument settings for channel seven(chan=6 since we're zero based).*/
load_instrument(6, 12, &ym2413.inst_tab[ym2413.instvol_r[6]>>4][0]);
/* Load instrument settings for channel eight.*/
load_instrument(7, 14, &ym2413.inst_tab[ym2413.instvol_r[7]>>4][0]);
/* Load instrument settings for channel nine.*/
load_instrument(8, 16, &ym2413.inst_tab[ym2413.instvol_r[8]>>4][0]);
}
/* BD key off */
KEY_OFF(&ym2413.P_CH[6].SLOT[SLOT1],~2);
KEY_OFF(&ym2413.P_CH[6].SLOT[SLOT2],~2);
/* HH key off */
KEY_OFF(&ym2413.P_CH[7].SLOT[SLOT1],~2);
/* SD key off */
KEY_OFF(&ym2413.P_CH[7].SLOT[SLOT2],~2);
/* TOM key off */
KEY_OFF(&ym2413.P_CH[8].SLOT[SLOT1],~2);
/* TOP-CY off */
KEY_OFF(&ym2413.P_CH[8].SLOT[SLOT2],~2);
}
ym2413.rhythm = v&0x3f;
break;
}
}
break;
}
case 0x10:
case 0x20:
{
int block_fnum;
int chan = r&0x0f;
if (chan >= 9)
chan -= 9; /* verified on real YM2413 */
CH = &ym2413.P_CH[chan];
if(r&0x10)
{
/* 10-18: FNUM 0-7 */
block_fnum = (CH->block_fnum&0x0f00) | v;
}
else
{
/* 20-28: suson, keyon, block, FNUM 8 */
block_fnum = ((v&0x0f)<<8) | (CH->block_fnum&0xff);
if(v&0x10)
{
KEY_ON (&CH->SLOT[SLOT1], 1);
KEY_ON (&CH->SLOT[SLOT2], 1);
}
else
{
KEY_OFF(&CH->SLOT[SLOT1],~1);
KEY_OFF(&CH->SLOT[SLOT2],~1);
}
CH->sus = v & 0x20;
}
/* update */
if(CH->block_fnum != block_fnum)
{
UINT8 block;
CH->block_fnum = block_fnum;
/* BLK 2,1,0 bits -> bits 3,2,1 of kcode, FNUM MSB -> kcode LSB */
CH->kcode = (block_fnum&0x0f00)>>8;
CH->ksl_base = ksl_tab[block_fnum>>5];
block_fnum = block_fnum * 2;
block = (block_fnum&0x1c00) >> 10;
CH->fc = ym2413.fn_tab[block_fnum&0x03ff] >> (7-block);
/* refresh Total Level in both SLOTs of this channel */
CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl);
CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl);
/* refresh frequency counter in both SLOTs of this channel */
CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
}
break;
}
case 0x30: /* inst 4 MSBs, VOL 4 LSBs */
{
int chan = r&0x0f;
if (chan >= 9)
chan -= 9; /* verified on real YM2413 */
CH = &ym2413.P_CH[chan];
SLOT = &CH->SLOT[SLOT2]; /* carrier */
SLOT->TL = ((v&0x0f)<<2)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
/*check wether we are in rhythm mode and handle instrument/volume register accordingly*/
if ((chan>=6) && (ym2413.rhythm&0x20))
{
/* we're in rhythm mode*/
if (chan>=7) /* only for channel 7 and 8 (channel 6 is handled in usual way)*/
{
SLOT = &CH->SLOT[SLOT1]; /* modulator envelope is HH(chan=7) or TOM(chan=8) */
SLOT->TL = ((v>>4)<<2)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
}
}
else
{
if ((ym2413.instvol_r[chan]&0xf0) != (v&0xf0))
{
ym2413.instvol_r[chan] = v; /* store for later use */
load_instrument(chan, chan * 2, &ym2413.inst_tab[v>>4][0]);
}
}
break;
}
default:
break;
}
}
void YM2413Init(void)
{
init_tables();
/* clear */
memset(&ym2413,0,sizeof(YM2413));
/* init global tables */
OPLL_initalize();
}
void YM2413ResetChip(void)
{
int c,s;
int i;
ym2413.eg_timer = 0;
ym2413.eg_cnt = 0;
ym2413.noise_rng = 1; /* noise shift register */
/* setup instruments table */
for (i=0; i<19; i++)
{
for (c=0; c<8; c++)
{
ym2413.inst_tab[i][c] = table[i][c];
}
}
/* reset with register write */
OPLLWriteReg(0x0f,0); /*test reg*/
for(i = 0x3f ; i >= 0x10 ; i-- ) OPLLWriteReg(i,0x00);
/* reset operator parameters */
for( c = 0 ; c < 9 ; c++ )
{
YM2413_OPLL_CH *CH = &ym2413.P_CH[c];
for(s = 0 ; s < 2 ; s++ )
{
/* wave table */
CH->SLOT[s].wavetable = 0;
CH->SLOT[s].state = EG_OFF;
CH->SLOT[s].volume = MAX_ATT_INDEX;
}
}
}
/* YM2413 I/O interface */
void YM2413Write(unsigned int a, unsigned int v)
{
if( !(a&2) )
{
if( !(a&1) )
{
/* address port */
ym2413.address = v & 0xff;
}
else
{
/* data port */
OPLLWriteReg(ym2413.address,v);
}
}
else
{
/* bit 0 enable/disable FM output (Master System / Mark-III FM adapter specific) */
ym2413.status = v & 0x01;
}
}
unsigned int YM2413Read(void)
{
/* bit 0 returns latched FM enable status, bits 1-2 return zero (Master System / Mark-III FM adapter specific) */
return 0xF8 | ym2413.status;
}
void YM2413Update(int *buffer, int length)
{
int i, out;
for( i=0; i < length ; i++ )
{
output[0] = 0;
output[1] = 0;
advance_lfo();
/* FM part */
chan_calc(&ym2413.P_CH[0]);
chan_calc(&ym2413.P_CH[1]);
chan_calc(&ym2413.P_CH[2]);
chan_calc(&ym2413.P_CH[3]);
chan_calc(&ym2413.P_CH[4]);
chan_calc(&ym2413.P_CH[5]);
if(!(ym2413.rhythm&0x20))
{
chan_calc(&ym2413.P_CH[6]);
chan_calc(&ym2413.P_CH[7]);
chan_calc(&ym2413.P_CH[8]);
}
else /* Rhythm part */
{
rhythm_calc(&ym2413.P_CH[0], (ym2413.noise_rng>>0)&1 );
}
/* Melody (MO) & Rythm (RO) outputs mixing & amplification (latched bit controls FM output) */
out = (output[0] + (output[1] * 2)) * 2 * ym2413.status;
/* Store to stereo sound buffer */
*buffer++ = out;
*buffer++ = out;
advance();
}
}
unsigned char *YM2413GetContextPtr(void)
{
return (unsigned char *)&ym2413;
}
unsigned int YM2413GetContextSize(void)
{
return sizeof(YM2413);
}
|