File: test.py

package info (click to toggle)
genetic 0.1.1b%2Bgit20170527.98255cb-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 156 kB
  • sloc: python: 380; makefile: 6
file content (98 lines) | stat: -rw-r--r-- 4,187 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import unittest
import random

import numpy as np

from genetic import individuals, recombination, selection, populations


#TODO test recombination and selection


class TestSingleChromosomeIndividual(unittest.TestCase):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.engine = lambda x: random.randint(0, 50)
        self.mutrate = 0.1

    def test_mutrate(self):
        with self.assertRaises(ValueError):
            individuals.SingleChromosomeIndividual(self.engine,
                                                   1.2, l=10)
        with self.assertRaises(ValueError):
            individuals.SingleChromosomeIndividual(self.engine,
                                                   -0.1, l=10)
        with self.assertRaises(ValueError):
            individuals.SingleChromosomeIndividual(self.engine,
                                                   1, l=10)
        individuals.SingleChromosomeIndividual(self.engine, self.mutrate, l=10)

    def test_engine_and_length(self):
        with self.assertRaises(ValueError):
            individuals.SingleChromosomeIndividual([self.engine],
                                                   self.mutrate, l=10)
        with self.assertRaises(ValueError):
            individuals.SingleChromosomeIndividual(self.engine, self.mutrate)
        with self.assertRaises(ValueError):
            individuals.SingleChromosomeIndividual([self.engine, 1],
                                                   self.mutrate)
        individuals.SingleChromosomeIndividual(self.engine, self.mutrate, l=10)
        individuals.SingleChromosomeIndividual([self.engine], self.mutrate, l=1)


class TestPanmicticPopulation(unittest.TestCase):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.engine = lambda x: random.randint(0, 50)
        self.fitness = lambda x: - abs(200 - sum(x.genome))
        self.size = 100
        self.indiv = individuals.SingleChromosomeIndividual(self.engine, 0.1, 50)
        self.select = selection.bimodal(0.2, 0.05)
        self.nlegends = 10

    def test_single_thread(self):
        ancestors = [self.indiv] * 2
        pop = populations.PanmicticPopulation(ancestors, self.size,
                                              self.fitness, self.select,
                                              self.nlegends)
        errors1 = list(map(abs, pop.evolve(5, jobs=1)))
        errors2 = list(map(abs, pop.evolve(100, jobs=1)))

        self.assertTrue(np.mean(errors2) < np.mean(errors1))

    def test_two_threads(self):
        ancestors = [self.indiv] * 2
        pop = populations.PanmicticPopulation(ancestors, self.size,
                                              self.fitness, self.select,
                                              self.nlegends)
        errors1 = list(map(abs, pop.evolve(5, jobs=2)))
        errors2 = list(map(abs, pop.evolve(100, jobs=2)))
        self.assertTrue(np.mean(errors2) < np.mean(errors1))

    def test_legends(self):
        ancestors = [self.indiv] * 2
        with self.assertRaises(ValueError):
            populations.PanmicticPopulation(ancestors, self.size,
                                            self.fitness, self.select,
                                            -10)
        with self.assertRaises(ValueError):
            populations.PanmicticPopulation(ancestors, self.size,
                                            self.fitness, self.select,
                                            0.1)

        pop = populations.PanmicticPopulation(ancestors, self.size,
                                              self.fitness, self.select,
                                              self.nlegends)
        errors1 = list(map(abs, pop.evolve(1, jobs=1)))
        legends1 = pop.legends
        errors2 = list(map(abs, pop.evolve(49, jobs=1)))
        legends2 = pop.legends

        legendary_scores1 = [abs(legend[0]) for legend in legends1]
        legendary_scores2 = [abs(legend[0]) for legend in legends2]

        self.assertTrue(np.mean(legendary_scores2) < np.mean(legendary_scores1))


if __name__ == "__main__":
    unittest.main()