File: ch08.html

package info (click to toggle)
genius 1.0.27-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 25,308 kB
  • sloc: ansic: 75,620; xml: 71,565; sh: 4,445; makefile: 1,927; lex: 523; yacc: 298; perl: 54
file content (55 lines) | stat: -rw-r--r-- 4,247 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapter 8. Matrizen in GEL</title><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="index.html" title="Genius-Handbuch"><link rel="prev" href="ch07s06.html" title="Laden von Programmen"><link rel="next" href="ch08s02.html" title="Operatoren für konjugierte Transposition und Transposition"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Chapter 8. Matrizen in GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch07s06.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n" href="ch08s02.html">Next</a></td></tr></table><hr></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="genius-gel-matrices"></a>Chapter 8. Matrizen in GEL</h1></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl class="toc"><dt><span class="sect1"><a href="ch08.html#genius-gel-matrix-support">Matrizen eingeben</a></span></dt><dt><span class="sect1"><a href="ch08s02.html">Operatoren für konjugierte Transposition und Transposition</a></span></dt><dt><span class="sect1"><a href="ch08s03.html">Lineare Algebra</a></span></dt></dl></div><p lang="en">
      Genius has support for vectors and matrices and possesses a sizable library of
      matrix manipulation and linear algebra functions.
    </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-matrix-support"></a>Matrizen eingeben</h2></div></div></div><p lang="en">
To enter matrices, you can use one of the following two syntaxes. You can either enter
the matrix on one line, separating values by commas and rows by semicolons.  Or you
can enter each row on one line, separating
values by commas.
You can also just combine the two methods.
So to enter a 3x3 matrix
of numbers 1-9 you could do
</p><pre lang="en" class="programlisting">[1,2,3;4,5,6;7,8,9]
</pre><p lang="en">
or
</p><pre lang="en" class="programlisting">[1, 2, 3
 4, 5, 6
 7, 8, 9]
</pre><p lang="en">
Do not use both ';' and return at once on the same line though.
      </p><p lang="en">
You can also use the matrix expansion functionality to enter matrices.
For example you can do:
</p><pre lang="en" class="programlisting">a = [ 1, 2, 3
      4, 5, 6
      7, 8, 9]
b = [ a,  10
      11, 12]
</pre><p lang="en">
and you should get
</p><pre lang="en" class="programlisting">[1,   2,  3, 10
 4,   5,  6, 10
 7,   8,  9, 10
 11, 11, 11, 12]
</pre><p lang="en">
similarly you can build matrices out of vectors and other stuff like that.
      </p><p lang="en">
Another thing is that non-specified spots are initialized to 0, so
</p><pre lang="en" class="programlisting">[1, 2, 3
 4, 5
 6]
</pre><p lang="en">
will end up being
</p><pre lang="en" class="programlisting">
[1, 2, 3
 4, 5, 0
 6, 0, 0]
</pre><p lang="en">
      </p><p lang="en">
	When matrices are evaluated, they are evaluated and traversed row-wise.  This is just
	like the <code class="literal">M@(j)</code> operator, which traverses the matrix row-wise.
      </p><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p lang="en">
Be careful about using returns for expressions inside the
<code class="literal">[ ]</code> brackets, as they have a slightly different meaning
there.  You will start a new row.
        </p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch07s06.html">Prev</a> </td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n" href="ch08s02.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Laden von Programmen </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Operatoren für konjugierte Transposition und Transposition</td></tr></table></div></body></html>