File: ch08s02.html

package info (click to toggle)
genius 1.0.27-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 25,308 kB
  • sloc: ansic: 75,620; xml: 71,565; sh: 4,445; makefile: 1,927; lex: 523; yacc: 298; perl: 54
file content (21 lines) | stat: -rw-r--r-- 2,933 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Operatoren für konjugierte Transposition und Transposition</title><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch08.html" title="Chapter 8. Matrizen in GEL"><link rel="prev" href="ch08.html" title="Chapter 8. Matrizen in GEL"><link rel="next" href="ch08s03.html" title="Lineare Algebra"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Operatoren für konjugierte Transposition und Transposition</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch08.html">Prev</a> </td><th width="60%" align="center">Chapter 8. Matrizen in GEL</th><td width="20%" align="right"> <a accesskey="n" href="ch08s03.html">Next</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-matrix-transpose"></a>Operatoren für konjugierte Transposition und Transposition</h2></div></div></div><p lang="en">
You can conjugate transpose a matrix by using the <code class="literal">'</code> operator.  That is
the entry in the
<code class="varname">i</code>th column and the <code class="varname">j</code>th row will be
the complex conjugate of the entry in the
<code class="varname">j</code>th column and the <code class="varname">i</code>th row of the original matrix.
 For example:
</p><pre lang="en" class="programlisting">[1,2,3]*[4,5,6]'
</pre><p lang="en">
We transpose the second vector to make matrix multiplication possible.
If you just want to transpose a matrix without conjugating it, you would
use the <code class="literal">.'</code> operator.  For example:
</p><pre lang="en" class="programlisting">[1,2,3]*[4,5,6i].'
</pre><p lang="en">
      </p><p lang="en">
	  Note that normal transpose, that is the <code class="literal">.'</code> operator, is much faster
	  and will not create a new copy of the matrix in memory.  The conjugate transpose does
	  create a new copy unfortunately.
	  It is recommended to always use the <code class="literal">.'</code> operator when working with real
	  matrices and vectors.
	</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch08.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="ch08.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="ch08s03.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 8. Matrizen in GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Lineare Algebra</td></tr></table></div></body></html>