1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
|
/*
* gensio - A library for abstracting stream I/O
* Copyright (C) 2018 Corey Minyard <minyard@acm.org>
*
* SPDX-License-Identifier: LGPL-2.1-only
*/
#include "config.h"
#include <string.h>
#include <stdio.h>
#include <gensio/gensio_class.h>
#include <gensio/gensio_builtins.h>
#include "gensio_filter_perf.h"
struct perf_filter {
struct gensio_filter *filter;
gensio_filter_cb filter_cb;
void *filter_cb_data;
struct gensio_os_funcs *o;
struct gensio_lock *lock;
/* Data waiting to be delivered to the lower layer. */
unsigned char *write_data;
gensiods writebuf_size;
gensiods write_len;
gensiods write_data_left;
gensiods read_count;
gensiods expect_len;
gensiods orig_expect_len;
struct gensio_time start_time;
bool read_end_time_set;
struct gensio_time read_end_time;
bool write_end_time_set;
struct gensio_time write_end_time;
unsigned int timeouts_since_print;
gensiods read_since_last_timeout;
gensiods write_since_last_timeout;
gensiods print_pending;
gensiods print_pos;
char print_buffer[1024];
bool final_started;
};
#define filter_to_perf(v) ((struct perf_filter *) \
gensio_filter_get_user_data(v))
static void
perf_lock(struct perf_filter *pfilter)
{
pfilter->o->lock(pfilter->lock);
}
static void
perf_unlock(struct perf_filter *pfilter)
{
pfilter->o->unlock(pfilter->lock);
}
static bool
perf_ul_read_pending(struct gensio_filter *filter)
{
struct perf_filter *pfilter = filter_to_perf(filter);
return pfilter->print_pending;
}
static bool
perf_ll_write_pending(struct gensio_filter *filter)
{
struct perf_filter *pfilter = filter_to_perf(filter);
/*
* Always return true if we are supplying data. We want it to
* supply data and then return a GE_REMCLOSE when out of data.
* But we want to get our data out to the lower layer before
* reporting that.
*/
return (pfilter->write_len > 0 &&
!(pfilter->final_started &&
(pfilter->print_pending > 0 || pfilter->expect_len > 0))) ||
(pfilter->orig_expect_len && pfilter->expect_len == 0 &&
pfilter->print_pending == 0);
}
static bool
perf_ll_read_needed(struct gensio_filter *filter)
{
return false;
}
static void
perf_filter_start_timer(struct perf_filter *pfilter)
{
gensio_time timeout = { 1, 0 };
pfilter->filter_cb(pfilter->filter_cb_data,
GENSIO_FILTER_CB_START_TIMER, &timeout);
}
static void
perf_set_callbacks(struct gensio_filter *filter,
gensio_filter_cb cb, void *cb_data)
{
struct perf_filter *pfilter = filter_to_perf(filter);
pfilter->filter_cb = cb;
pfilter->filter_cb_data = cb_data;
}
static int
perf_check_open_done(struct gensio_filter *filter, struct gensio *io)
{
struct perf_filter *pfilter = filter_to_perf(filter);
perf_filter_start_timer(pfilter);
pfilter->o->get_monotonic_time(pfilter->o, &pfilter->start_time);
return 0;
}
static int
perf_try_connect(struct gensio_filter *filter, gensio_time *timeout)
{
return 0;
}
static void
set_read_end_time(struct perf_filter *pfilter)
{
if (!pfilter->read_end_time_set) {
pfilter->o->get_monotonic_time(pfilter->o, &pfilter->read_end_time);
pfilter->read_end_time_set = true;
}
}
static void
set_write_end_time(struct perf_filter *pfilter)
{
if (!pfilter->write_end_time_set) {
pfilter->o->get_monotonic_time(pfilter->o, &pfilter->write_end_time);
pfilter->write_end_time_set = true;
}
}
static int
perf_handle_end_check(struct perf_filter *pfilter)
{
if (pfilter->final_started && pfilter->print_pending == 0)
return 0;
set_read_end_time(pfilter);
set_write_end_time(pfilter);
if (!pfilter->final_started && pfilter->print_pending == 0) {
gensiods write_count;
double total_read_time;
double total_write_time;
pfilter->read_end_time.secs -= pfilter->start_time.secs;
pfilter->read_end_time.nsecs -= pfilter->start_time.nsecs;
while (pfilter->read_end_time.nsecs < 0) {
pfilter->read_end_time.nsecs += 1000000000;
pfilter->read_end_time.secs -= 1;
}
pfilter->write_end_time.secs -= pfilter->start_time.secs;
pfilter->write_end_time.nsecs -= pfilter->start_time.nsecs;
while (pfilter->write_end_time.nsecs < 0) {
pfilter->write_end_time.nsecs += 1000000000;
pfilter->write_end_time.secs -= 1;
}
write_count = pfilter->write_len - pfilter->write_data_left;
total_read_time = ((double) pfilter->read_end_time.secs +
((double) pfilter->read_end_time.nsecs /
1000000000.0));
total_write_time = ((double) pfilter->write_end_time.secs +
((double) pfilter->write_end_time.nsecs /
1000000000.0));
/* Flip read and write, this is from the user's perspective. */
pfilter->print_pending = snprintf(pfilter->print_buffer,
sizeof(pfilter->print_buffer),
"TOTAL: Wrote %ld in %llu.%3.3u seconds\n"
" %lf write bytes/sec\n"
" Read %ld in %llu.%3.3u seconds\n"
" %lf read bytes/sec\n",
write_count,
(unsigned long long) pfilter->write_end_time.secs,
(pfilter->write_end_time.nsecs + 500000) / 1000000,
(double) write_count / total_write_time,
pfilter->read_count,
(unsigned long long) pfilter->read_end_time.secs,
(pfilter->read_end_time.nsecs + 500000) / 1000000,
(double) pfilter->read_count / total_read_time);
pfilter->final_started = true;
pfilter->print_pos = 0;
}
return GE_INPROGRESS;
}
static int
perf_try_disconnect(struct gensio_filter *filter, gensio_time *timeout)
{
return 0;
}
static int
perf_ul_write(struct gensio_filter *filter,
gensio_ul_filter_data_handler handler, void *cb_data,
gensiods *rcount,
const struct gensio_sg *sg, gensiods sglen,
const char *const *auxdata)
{
struct perf_filter *pfilter = filter_to_perf(filter);
int err = 0;
gensiods i, writelen = 0;
/* Just ignore data from the upper layer. */
for (i = 0; i < sglen; i++)
writelen += sg[i].buflen;
if (rcount)
*rcount = writelen;
perf_lock(pfilter);
if (pfilter->write_data_left > 0) {
gensiods count = pfilter->write_data_left, ocount;
struct gensio_sg sg = { pfilter->write_data, 0 };
if (count > pfilter->writebuf_size)
count = pfilter->writebuf_size;
sg.buflen = count;
ocount = count;
perf_unlock(pfilter);
err = handler(cb_data, &count, &sg, 1, NULL);
perf_lock(pfilter);
if (!err) {
if (count > ocount)
count = ocount;
pfilter->write_since_last_timeout += count;
pfilter->write_data_left -= count;
if (pfilter->write_data_left == 0)
set_write_end_time(pfilter);
}
} else if (pfilter->write_len || pfilter->orig_expect_len) {
if (!pfilter->final_started && pfilter->expect_len == 0)
/* We were supplying data and we are out of data. */
perf_handle_end_check(pfilter);
else if (pfilter->final_started && pfilter->print_pending == 0)
err = GE_REMCLOSE;
}
perf_unlock(pfilter);
return err;
}
static int
perf_ll_write(struct gensio_filter *filter,
gensio_ll_filter_data_handler handler, void *cb_data,
gensiods *rcount,
unsigned char *buf, gensiods buflen,
const char *const *auxdata)
{
struct perf_filter *pfilter = filter_to_perf(filter);
int err = 0;
if (rcount)
*rcount = buflen; /* Ignore data from below. */
perf_lock(pfilter);
pfilter->read_count += buflen;
pfilter->read_since_last_timeout += buflen;
if (buflen > pfilter->expect_len)
pfilter->expect_len = 0;
else
pfilter->expect_len -= buflen;
if (pfilter->orig_expect_len && pfilter->expect_len == 0)
set_read_end_time(pfilter);
if (pfilter->print_pending) {
gensiods count = pfilter->print_pending - pfilter->print_pos;
perf_unlock(pfilter);
err = handler(cb_data, &count,
(unsigned char *) pfilter->print_buffer + pfilter->print_pos,
count, NULL);
perf_lock(pfilter);
if (!err) {
if (count > pfilter->print_pending - pfilter->print_pos)
count = pfilter->print_pending - pfilter->print_pos;
pfilter->print_pos += count;
if (pfilter->print_pos == pfilter->print_pending)
pfilter->print_pending = 0;
}
}
perf_unlock(pfilter);
return err;
}
static int
perf_filter_timeout(struct gensio_filter *filter)
{
struct perf_filter *pfilter = filter_to_perf(filter);
perf_lock(pfilter);
pfilter->timeouts_since_print++;
if (!pfilter->print_pending) {
pfilter->print_pending = snprintf(pfilter->print_buffer,
sizeof(pfilter->print_buffer),
"Wrote %ld, Read %ld in %u second%s\n",
pfilter->write_since_last_timeout,
pfilter->read_since_last_timeout,
pfilter->timeouts_since_print,
pfilter->timeouts_since_print == 1 ? "" : "s");
pfilter->write_since_last_timeout = 0;
pfilter->read_since_last_timeout = 0;
pfilter->timeouts_since_print = 0;
pfilter->print_pos = 0;
}
perf_filter_start_timer(pfilter);
perf_unlock(pfilter);
return 0;
}
static void
perf_filter_io_err(struct gensio_filter *filter, int err)
{
struct perf_filter *pfilter = filter_to_perf(filter);
perf_lock(pfilter);
perf_handle_end_check(pfilter);
perf_unlock(pfilter);
}
static int
perf_setup(struct gensio_filter *filter)
{
return 0;
}
static void
perf_filter_cleanup(struct gensio_filter *filter)
{
struct perf_filter *pfilter = filter_to_perf(filter);
pfilter->write_data_left = pfilter->write_len;
pfilter->expect_len = pfilter->orig_expect_len;
pfilter->read_count = 0;
pfilter->read_end_time_set = false;
pfilter->write_end_time_set = false;
pfilter->read_since_last_timeout = 0;
pfilter->write_since_last_timeout = 0;
pfilter->timeouts_since_print = 0;
pfilter->print_pending = 0;
pfilter->final_started = false;
}
static void
pfilter_free(struct perf_filter *pfilter)
{
if (pfilter->lock)
pfilter->o->free_lock(pfilter->lock);
if (pfilter->write_data)
pfilter->o->free(pfilter->o, pfilter->write_data);
if (pfilter->filter)
gensio_filter_free_data(pfilter->filter);
pfilter->o->free(pfilter->o, pfilter);
}
static void
perf_free(struct gensio_filter *filter)
{
struct perf_filter *pfilter = filter_to_perf(filter);
pfilter_free(pfilter);
}
static int gensio_perf_filter_func(struct gensio_filter *filter, int op,
const void *func, void *data,
gensiods *count,
void *buf, const void *cbuf,
gensiods buflen,
const char *const *auxdata)
{
switch (op) {
case GENSIO_FILTER_FUNC_SET_CALLBACK:
perf_set_callbacks(filter, func, data);
return 0;
case GENSIO_FILTER_FUNC_UL_READ_PENDING:
return perf_ul_read_pending(filter);
case GENSIO_FILTER_FUNC_LL_WRITE_PENDING:
return perf_ll_write_pending(filter);
case GENSIO_FILTER_FUNC_LL_READ_NEEDED:
return perf_ll_read_needed(filter);
case GENSIO_FILTER_FUNC_CHECK_OPEN_DONE:
return perf_check_open_done(filter, data);
case GENSIO_FILTER_FUNC_TRY_CONNECT:
return perf_try_connect(filter, data);
case GENSIO_FILTER_FUNC_TRY_DISCONNECT:
return perf_try_disconnect(filter, data);
case GENSIO_FILTER_FUNC_UL_WRITE_SG:
return perf_ul_write(filter, func, data, count, cbuf, buflen, auxdata);
case GENSIO_FILTER_FUNC_LL_WRITE:
return perf_ll_write(filter, func, data, count, buf, buflen, auxdata);
case GENSIO_FILTER_FUNC_TIMEOUT:
return perf_filter_timeout(filter);
case GENSIO_FILTER_FUNC_SETUP:
return perf_setup(filter);
case GENSIO_FILTER_FUNC_CLEANUP:
perf_filter_cleanup(filter);
return 0;
case GENSIO_FILTER_FUNC_IO_ERR:
perf_filter_io_err(filter, *((int *) data));
return 0;
case GENSIO_FILTER_FUNC_FREE:
perf_free(filter);
return 0;
default:
return GE_NOTSUP;
}
}
static struct gensio_filter *
gensio_perf_filter_raw_alloc(struct gensio_os_funcs *o,
gensiods writebuf_size, gensiods write_len,
gensiods expect_len)
{
struct perf_filter *pfilter;
pfilter = o->zalloc(o, sizeof(*pfilter));
if (!pfilter)
return NULL;
pfilter->o = o;
pfilter->writebuf_size = writebuf_size;
pfilter->write_len = write_len;
pfilter->write_data_left = write_len;
pfilter->expect_len = expect_len;
pfilter->orig_expect_len = expect_len;
pfilter->lock = o->alloc_lock(o);
if (!pfilter->lock)
goto out_nomem;
pfilter->write_data = o->zalloc(o, writebuf_size);
if (!pfilter->write_data)
goto out_nomem;
pfilter->filter = gensio_filter_alloc_data(o, gensio_perf_filter_func,
pfilter);
if (!pfilter->filter)
goto out_nomem;
return pfilter->filter;
out_nomem:
pfilter_free(pfilter);
return NULL;
}
int
gensio_perf_filter_alloc(struct gensio_os_funcs *o,
const char * const args[],
struct gensio_filter **rfilter)
{
struct gensio_filter *filter;
gensiods writebuf_size = 1024;
gensiods write_len = 0;
gensiods expect_len = 0;
unsigned int i;
for (i = 0; args && args[i]; i++) {
if (gensio_check_keyds(args[i], "writebuf", &writebuf_size) > 0)
continue;
if (gensio_check_keyds(args[i], "write_len", &write_len) > 0)
continue;
if (gensio_check_keyds(args[i], "expect_len", &expect_len) > 0)
continue;
return GE_INVAL;
}
filter = gensio_perf_filter_raw_alloc(o, writebuf_size, write_len,
expect_len);
if (!filter)
return GE_NOMEM;
*rfilter = filter;
return 0;
}
|