1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
.. _core_tutorial:
Core Tutorial
=============
(This tutorial is greatly inspired from the `SQLAlchemy SQL Expression Language
Tutorial`_, which is recommended reading, eventually.)
.. _SQLAlchemy SQL Expression Language Tutorial:
http://docs.sqlalchemy.org/en/latest/core/tutorial.html
This tutorial shows how to use the SQLAlchemy Expression Language (a.k.a.
SQLAlchemy Core) with GeoAlchemy. As defined by the SQLAlchemy documentation
itself, in contrast to the ORM's domain-centric mode of usage, the SQL
Expression Language provides a schema-centric usage paradigm.
Connect to the DB
-----------------
For this tutorial we will use a PostGIS 2 database. To connect we use
SQLAlchemy's ``create_engine()`` function::
>>> from sqlalchemy import create_engine
>>> engine = create_engine(
... 'postgresql://gis:gis@localhost/gis',
... echo=True,
... plugins=["geoalchemy2"],
... )
In this example the name of the database, the database user, and the database
password, is ``gis``.
The ``echo`` flag is a shortcut to setting up SQLAlchemy logging, which is
accomplished via Python's standard logging module. With it is enabled, we'll
see all the generated SQL produced.
The ``plugins`` argument adds some event listeners to adapt the behavior of
``GeoAlchemy2`` to the dialect. This is not mandatory but if the plugin is not
loaded, then the listeners will have to be added to the engine manually (see an
example in :ref:`spatialite_dialect`).
The return value of ``create_engine`` is an ``Engine`` object, which
represents the core interface to the database.
Define a Table
--------------
The very first object that we need to create is a ``Table``. Here
we create a ``lake_table`` object, which will correspond to the
``lake`` table in the database::
>>> from sqlalchemy import Table, Column, Integer, String, MetaData
>>> from geoalchemy2 import Geometry
>>>
>>> metadata = MetaData()
>>> lake_table = Table('lake', metadata,
... Column('id', Integer, primary_key=True),
... Column('name', String),
... Column('geom', Geometry('POLYGON'))
... )
This table is composed of three columns, ``id``, ``name`` and ``geom``. The
``geom`` column is a :class:`geoalchemy2.types.Geometry` column whose
``geometry_type`` is ``POLYGON``.
Any ``Table`` object is added to a ``MetaData`` object, which is a catalog of
``Table`` objects (and other related objects).
Create the Table
----------------
With our ``Table`` being defined we're ready (to have SQLAlchemy)
create it in the database::
>>> lake_table.create(engine)
Calling ``create_all()`` on ``metadata`` would have worked equally well::
>>> metadata.create_all(engine)
In that case every ``Table`` that's referenced to by ``metadata`` would be
created in the database. The ``metadata`` object includes one ``Table`` here,
our now well-known ``lake_table`` object.
Reflecting tables
-----------------
The `reflection system of SQLAlchemy
<http://docs.sqlalchemy.org/en/latest/core/schema.html#metadata-reflection>`_ can be
used on tables containing :class:`geoalchemy2.types.Geometry` or
:class:`geoalchemy2.types.Geography` columns. In this case, the type must be imported to
be registered into SQLAlchemy, even if it is not used explicitly.
>>> from geoalchemy2 import Geometry # <= not used but must be imported
>>> from sqlalchemy import create_engine, MetaData
>>> engine = create_engine(
... "postgresql://myuser:mypass@mydb.host.tld/mydbname",
... plugins=["geoalchemy2"]
... )
>>> meta = MetaData()
>>> meta.reflect(bind=engine)
Insertions
----------
We want to insert records into the ``lake`` table. For that we need to create
an ``Insert`` object. SQLAlchemy provides multiple constructs for creating an
``Insert`` object, here's one::
>>> ins = lake_table.insert()
>>> str(ins)
INSERT INTO lake (id, name, geom) VALUES (:id, :name, ST_GeomFromEWKT(:geom))
The ``geom`` column being a ``Geometry`` column, the ``:geom`` bind value is
wrapped in a ``ST_GeomFromEWKT`` call.
To limit the columns named in the ``INSERT`` query the ``values()`` method
can be used::
>>> ins = lake_table.insert().values(name='Majeur',
... geom='POLYGON((0 0,1 0,1 1,0 1,0 0))')
...
>>> str(ins)
INSERT INTO lake (name, geom) VALUES (:name, ST_GeomFromEWKT(:geom))
.. tip::
The string representation of the SQL expression does not include the
data placed in ``values``. We got named bind parameters instead. To
view the data we can get a compiled form of the expression, and ask
for its ``params``::
>>> ins.compile.params()
{'geom': 'POLYGON((0 0,1 0,1 1,0 1,0 0))', 'name': 'Majeur'}
Up to now we've created an ``INSERT`` query but we haven't sent this query to
the database yet. Before being able to send it to the database we need
a database ``Connection``. We can get a ``Connection`` from the ``Engine``
object we created earlier::
>>> conn = engine.connect()
We're now ready to execute our ``INSERT`` statement::
>>> result = conn.execute(ins)
This is what the logging system should output::
INSERT INTO lake (name, geom) VALUES (%(name)s, ST_GeomFromEWKT(%(geom)s)) RETURNING lake.id
{'geom': 'POLYGON((0 0,1 0,1 1,0 1,0 0))', 'name': 'Majeur'}
COMMIT
The value returned by ``conn.execute()``, stored in ``result``, is
a ``sqlalchemy.engine.ResultProxy`` object. In the case of an ``INSERT`` we can
get the primary key value which was generated from our statement::
>>> result.inserted_primary_key
[1]
Instead of using ``values()`` to specify our ``INSERT`` data, we can send
the data to the ``execute()`` method on ``Connection``. So we could rewrite
things as follows::
>>> conn.execute(lake_table.insert(),
... name='Majeur', geom='POLYGON((0 0,1 0,1 1,0 1,0 0))')
Now let's use another form, allowing to insert multiple rows at once::
>>> conn.execute(lake_table.insert(), [
... {'name': 'Garde', 'geom': 'POLYGON((1 0,3 0,3 2,1 2,1 0))'},
... {'name': 'Orta', 'geom': 'POLYGON((3 0,6 0,6 3,3 3,3 0))'}
... ])
...
.. tip::
In the above examples the geometries are specified as WKT strings.
Specifying them as EWKT strings is also supported.
Selections
----------
Inserting involved creating an ``Insert`` object, so it'd come to no surprise
that Selecting involves creating a ``Select`` object. The primary construct to
generate ``SELECT`` statements is SQLAlchemy`s ``select()`` function::
>>> from sqlalchemy.sql import select
>>> s = select([lake_table])
>>> str(s)
SELECT lake.id, lake.name, ST_AsEWKB(lake.geom) AS geom FROM lake
The ``geom`` column being a ``Geometry`` it is wrapped in a ``ST_AsEWKB``
call when specified as a column in a ``SELECT`` statement.
We can now execute the statement and look at the results::
>>> result = conn.execute(s)
>>> for row in result:
... print 'name:', row['name'], '; geom:', row['geom'].desc
...
name: Majeur ; geom: 0103...
name: Garde ; geom: 0103...
name: Orta ; geom: 0103...
``row['geom']`` is a :class:`geoalchemy2.types.WKBElement` instance. In this
example we just get an hexadecimal representation of the geometry's WKB value
using the ``desc`` property.
Spatial Query
-------------
As spatial database users executing spatial queries is of a great interest to
us. There comes GeoAlchemy!
Spatial relationship
~~~~~~~~~~~~~~~~~~~~
Using spatial filters in SQL SELECT queries is very common. Such queries are
performed by using spatial relationship functions, or operators, in the
``WHERE`` clause of the SQL query.
For example, to find lakes that contain the point ``POINT(4 1)``,
we can use this::
>>> from sqlalchemy import func
>>> s = select([lake_table],
func.ST_Contains(lake_table.c.geom, 'POINT(4 1)'))
>>> str(s)
SELECT lake.id, lake.name, ST_AsEWKB(lake.geom) AS geom FROM lake WHERE ST_Contains(lake.geom, :param_1)
>>> result = conn.execute(s)
>>> for row in result:
... print 'name:', row['name'], '; geom:', row['geom'].desc
...
name: Orta ; geom: 0103...
GeoAlchemy allows rewriting this more concisely::
>>> s = select([lake_table], lake_table.c.geom.ST_Contains('POINT(4 1)'))
>>> str(s)
SELECT lake.id, lake.name, ST_AsEWKB(lake.geom) AS geom FROM lake WHERE ST_Contains(lake.geom, :param_1)
Here the ``ST_Contains`` function is applied to ``lake.c.geom``. And the
generated SQL the ``lake.geom`` column is actually passed to the
``ST_Contains`` function as the first argument.
Here's another spatial query, based on ``ST_Intersects``::
>>> s = select([lake_table],
... lake_table.c.geom.ST_Intersects('LINESTRING(2 1,4 1)'))
>>> result = conn.execute(s)
>>> for row in result:
... print 'name:', row['name'], '; geom:', row['geom'].desc
...
name: Garde ; geom: 0103...
name: Orta ; geom: 0103...
This query selects lakes whose geometries intersect ``LINESTRING(2 1,4 1)``.
The GeoAlchemy functions all start with ``ST_``. Operators are also called as
functions, but the names of operator functions don't include the ``ST_``
prefix.
As an example let's use PostGIS' ``&&`` operator, which allows testing
whether the bounding boxes of geometries intersect. GeoAlchemy provides the
``intersects`` function for that::
>>> s = select([lake_table],
... lake_table.c.geom.intersects('LINESTRING(2 1,4 1)'))
>>> result = conn.execute(s)
>>> for row in result:
... print 'name:', row['name'], '; geom:', row['geom'].desc
...
name: Garde ; geom: 0103...
name: Orta ; geom: 0103...
Processing and Measurement
~~~~~~~~~~~~~~~~~~~~~~~~~~
Here's a ``Select`` that calculates the areas of buffers for our lakes::
>>> s = select([lake_table.c.name,
func.ST_Area(
lake_table.c.geom.ST_Buffer(2)).label('bufferarea')])
>>> str(s)
SELECT lake.name, ST_Area(ST_Buffer(lake.geom, %(param_1)s)) AS bufferarea FROM lake
>>> result = conn.execute(s)
>>> for row in result:
... print '%s: %f' % (row['name'], row['bufferarea'])
Majeur: 21.485781
Garde: 32.485781
Orta: 45.485781
Obviously, processing and measurement functions can also be used in ``WHERE``
clauses. For example::
>>> s = select([lake_table.c.name],
lake_table.c.geom.ST_Buffer(2).ST_Area() > 33)
>>> str(s)
SELECT lake.name FROM lake WHERE ST_Area(ST_Buffer(lake.geom, :param_1)) > :ST_Area_1
>>> result = conn.execute(s)
>>> for row in result:
... print row['name']
Orta
And, like any other functions supported by GeoAlchemy, processing and
measurement functions can be applied to
:class:`geoalchemy2.elements.WKBElement`. For example::
>>> s = select([lake_table], lake_table.c.name == 'Majeur')
>>> result = conn.execute(s)
>>> lake = result.fetchone()
>>> bufferarea = conn.scalar(lake[lake_table.c.geom].ST_Buffer(2).ST_Area())
>>> print '%s: %f' % (lake['name'], bufferarea)
Majeur: 21.485781
Use Raster functions
--------------------
A few functions (like `ST_Transform()`, `ST_Union()`, `ST_SnapToGrid()`, ...) can be
used on both :class:`geoalchemy2.types.Geometry` and :class:`geoalchemy2.types.Raster`
types. In GeoAlchemy2, these functions are only defined for
:class:`Geometry` as it can not be defined for several types at the
same time. Thus using these functions on :class:`Raster` requires
minor tweaking to enforce the type by passing the `type_=Raster` argument to the
function:
>>> s = select([func.ST_Transform(
lake_table.c.raster,
2154,
type_=Raster)
.label('transformed_raster')])
Further Reference
-----------------
* Spatial Functions Reference: :ref:`spatial_functions`
* Spatial Operators Reference: :ref:`spatial_operators`
* Elements Reference: :ref:`elements`
|