File: core_tutorial.rst

package info (click to toggle)
geoalchemy2 0.18.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,712 kB
  • sloc: python: 10,109; sh: 159; makefile: 133
file content (340 lines) | stat: -rw-r--r-- 12,134 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
.. _core_tutorial:

Core Tutorial
=============

(This tutorial is greatly inspired from the `SQLAlchemy SQL Expression Language
Tutorial`_, which is recommended reading, eventually.)

.. _SQLAlchemy SQL Expression Language Tutorial:
    http://docs.sqlalchemy.org/en/latest/core/tutorial.html

This tutorial shows how to use the SQLAlchemy Expression Language (a.k.a.
SQLAlchemy Core) with GeoAlchemy. As defined by the SQLAlchemy documentation
itself, in contrast to the ORM's domain-centric mode of usage, the SQL
Expression Language provides a schema-centric usage paradigm.

Connect to the DB
-----------------

For this tutorial we will use a PostGIS 2 database. To connect we use
SQLAlchemy's ``create_engine()`` function::

    >>> from sqlalchemy import create_engine
    >>> engine = create_engine(
    ...     'postgresql://gis:gis@localhost/gis',
    ...     echo=True,
    ...     plugins=["geoalchemy2"],
    ... )

In this example the name of the database, the database user, and the database
password, is ``gis``.

The ``echo`` flag is a shortcut to setting up SQLAlchemy logging, which is
accomplished via Python's standard logging module. With it is enabled, we'll
see all the generated SQL produced.

The ``plugins`` argument adds some event listeners to adapt the behavior of
``GeoAlchemy2`` to the dialect. This is not mandatory but if the plugin is not
loaded, then the listeners will have to be added to the engine manually (see an
example in :ref:`spatialite_dialect`).

The return value of ``create_engine`` is an ``Engine`` object, which
represents the core interface to the database.

Define a Table
--------------

The very first object that we need to create is a ``Table``. Here
we create a ``lake_table`` object, which will correspond to the
``lake`` table in the database::

    >>> from sqlalchemy import Table, Column, Integer, String, MetaData
    >>> from geoalchemy2 import Geometry
    >>>
    >>> metadata = MetaData()
    >>> lake_table = Table('lake', metadata,
    ...     Column('id', Integer, primary_key=True),
    ...     Column('name', String),
    ...     Column('geom', Geometry('POLYGON'))
    ... )

This table is composed of three columns, ``id``, ``name`` and ``geom``. The
``geom`` column is a :class:`geoalchemy2.types.Geometry` column whose
``geometry_type`` is ``POLYGON``.

Any ``Table`` object is added to a ``MetaData`` object, which is a catalog of
``Table`` objects (and other related objects).

Create the Table
----------------

With our ``Table`` being defined we're ready (to have SQLAlchemy)
create it in the database::

    >>> lake_table.create(engine)

Calling ``create_all()`` on ``metadata`` would have worked equally well::

    >>> metadata.create_all(engine)

In that case every ``Table`` that's referenced to by ``metadata`` would be
created in the database. The ``metadata`` object includes one ``Table`` here,
our now well-known ``lake_table`` object.

Reflecting tables
-----------------

The `reflection system of SQLAlchemy
<http://docs.sqlalchemy.org/en/latest/core/schema.html#metadata-reflection>`_ can be
used on tables containing :class:`geoalchemy2.types.Geometry` or
:class:`geoalchemy2.types.Geography` columns. In this case, the type must be imported to
be registered into SQLAlchemy, even if it is not used explicitly.

    >>> from geoalchemy2 import Geometry  # <= not used but must be imported
    >>> from sqlalchemy import create_engine, MetaData
    >>> engine = create_engine(
    ...     "postgresql://myuser:mypass@mydb.host.tld/mydbname",
    ...     plugins=["geoalchemy2"]
    ... )
    >>> meta = MetaData()
    >>> meta.reflect(bind=engine)

Insertions
----------

We want to insert records into the ``lake`` table. For that we need to create
an ``Insert`` object. SQLAlchemy provides multiple constructs for creating an
``Insert`` object, here's one::

    >>> ins = lake_table.insert()
    >>> str(ins)
    INSERT INTO lake (id, name, geom) VALUES (:id, :name, ST_GeomFromEWKT(:geom))

The ``geom`` column being a ``Geometry`` column, the ``:geom`` bind value is
wrapped in a ``ST_GeomFromEWKT`` call.

To limit the columns named in the ``INSERT`` query the ``values()`` method
can be used::

    >>> ins = lake_table.insert().values(name='Majeur',
    ...                                  geom='POLYGON((0 0,1 0,1 1,0 1,0 0))')
    ...
    >>> str(ins)
    INSERT INTO lake (name, geom) VALUES (:name, ST_GeomFromEWKT(:geom))

.. tip::

    The string representation of the SQL expression does not include the
    data placed in ``values``. We got named bind parameters instead. To
    view the data we can get a compiled form of the expression, and ask
    for its ``params``::

        >>> ins.compile.params()
        {'geom': 'POLYGON((0 0,1 0,1 1,0 1,0 0))', 'name': 'Majeur'}

Up to now we've created an ``INSERT`` query but we haven't sent this query to
the database yet. Before being able to send it to the database we need
a database ``Connection``. We can get a ``Connection`` from the ``Engine``
object we created earlier::

    >>> conn = engine.connect()

We're now ready to execute our ``INSERT`` statement::

    >>> result = conn.execute(ins)

This is what the logging system should output::

    INSERT INTO lake (name, geom) VALUES (%(name)s, ST_GeomFromEWKT(%(geom)s)) RETURNING lake.id
    {'geom': 'POLYGON((0 0,1 0,1 1,0 1,0 0))', 'name': 'Majeur'}
    COMMIT

The value returned by ``conn.execute()``, stored in ``result``, is
a ``sqlalchemy.engine.ResultProxy`` object. In the case of an ``INSERT`` we can
get the primary key value which was generated from our statement::

    >>> result.inserted_primary_key
    [1]

Instead of using ``values()`` to specify our ``INSERT`` data, we can send
the data to the ``execute()`` method on ``Connection``. So we could rewrite
things as follows::

    >>> conn.execute(lake_table.insert(),
    ...              name='Majeur', geom='POLYGON((0 0,1 0,1 1,0 1,0 0))')

Now let's use another form, allowing to insert multiple rows at once::

    >>> conn.execute(lake_table.insert(), [
    ...     {'name': 'Garde', 'geom': 'POLYGON((1 0,3 0,3 2,1 2,1 0))'},
    ...     {'name': 'Orta', 'geom': 'POLYGON((3 0,6 0,6 3,3 3,3 0))'}
    ...     ])
    ...

.. tip::

    In the above examples the geometries are specified as WKT strings.
    Specifying them as EWKT strings is also supported.


Selections
----------

Inserting involved creating an ``Insert`` object, so it'd come to no surprise
that Selecting involves creating a ``Select`` object.  The primary construct to
generate ``SELECT`` statements is SQLAlchemy`s ``select()`` function::

    >>> from sqlalchemy.sql import select
    >>> s = select([lake_table])
    >>> str(s)
    SELECT lake.id, lake.name, ST_AsEWKB(lake.geom) AS geom FROM lake

The ``geom`` column being a ``Geometry`` it is wrapped in a ``ST_AsEWKB``
call when specified as a column in a ``SELECT`` statement.

We can now execute the statement and look at the results::

    >>> result = conn.execute(s)
    >>> for row in result:
    ...     print 'name:', row['name'], '; geom:', row['geom'].desc
    ...
    name: Majeur ; geom: 0103...
    name: Garde ; geom: 0103...
    name: Orta ; geom: 0103...

``row['geom']`` is a :class:`geoalchemy2.types.WKBElement` instance.  In this
example we just get an hexadecimal representation of the geometry's WKB value
using the ``desc`` property.

Spatial Query
-------------

As spatial database users executing spatial queries is of a great interest to
us. There comes GeoAlchemy!

Spatial relationship
~~~~~~~~~~~~~~~~~~~~

Using spatial filters in SQL SELECT queries is very common. Such queries are
performed by using spatial relationship functions, or operators, in the
``WHERE`` clause of the SQL query.

For example, to find lakes that contain the point ``POINT(4 1)``,
we can use this::


    >>> from sqlalchemy import func
    >>> s = select([lake_table],
                   func.ST_Contains(lake_table.c.geom, 'POINT(4 1)'))
    >>> str(s)
    SELECT lake.id, lake.name, ST_AsEWKB(lake.geom) AS geom FROM lake WHERE ST_Contains(lake.geom, :param_1)
    >>> result = conn.execute(s)
    >>> for row in result:
    ...     print 'name:', row['name'], '; geom:', row['geom'].desc
    ...
    name: Orta ; geom: 0103...

GeoAlchemy allows rewriting this more concisely::

    >>> s = select([lake_table], lake_table.c.geom.ST_Contains('POINT(4 1)'))
    >>> str(s)
    SELECT lake.id, lake.name, ST_AsEWKB(lake.geom) AS geom FROM lake WHERE ST_Contains(lake.geom, :param_1)

Here the ``ST_Contains`` function is applied to ``lake.c.geom``. And the
generated SQL the ``lake.geom`` column is actually passed to the
``ST_Contains`` function as the first argument.

Here's another spatial query, based on ``ST_Intersects``::

    >>> s = select([lake_table],
    ...            lake_table.c.geom.ST_Intersects('LINESTRING(2 1,4 1)'))
    >>> result = conn.execute(s)
    >>> for row in result:
    ...     print 'name:', row['name'], '; geom:', row['geom'].desc
    ...
    name: Garde ; geom: 0103...
    name: Orta ; geom: 0103...

 This query selects lakes whose geometries intersect ``LINESTRING(2 1,4 1)``.

The GeoAlchemy functions all start with ``ST_``. Operators are also called as
functions, but the names of operator functions don't include the ``ST_``
prefix.

As an example let's use PostGIS' ``&&`` operator, which allows testing
whether the bounding boxes of geometries intersect. GeoAlchemy provides the
``intersects`` function for that::

    >>> s = select([lake_table],
    ...            lake_table.c.geom.intersects('LINESTRING(2 1,4 1)'))
    >>> result = conn.execute(s)
    >>> for row in result:
    ...     print 'name:', row['name'], '; geom:', row['geom'].desc
    ...
    name: Garde ; geom: 0103...
    name: Orta ; geom: 0103...

Processing and Measurement
~~~~~~~~~~~~~~~~~~~~~~~~~~

Here's a ``Select`` that calculates the areas of buffers for our lakes::

    >>> s = select([lake_table.c.name,
                    func.ST_Area(
                        lake_table.c.geom.ST_Buffer(2)).label('bufferarea')])
    >>> str(s)
    SELECT lake.name, ST_Area(ST_Buffer(lake.geom, %(param_1)s)) AS bufferarea FROM lake
    >>> result = conn.execute(s)
    >>> for row in result:
    ...     print '%s: %f' % (row['name'], row['bufferarea'])
    Majeur: 21.485781
    Garde: 32.485781
    Orta: 45.485781

Obviously, processing and measurement functions can also be used in ``WHERE``
clauses. For example::

    >>> s = select([lake_table.c.name],
                   lake_table.c.geom.ST_Buffer(2).ST_Area() > 33)
    >>> str(s)
    SELECT lake.name FROM lake WHERE ST_Area(ST_Buffer(lake.geom, :param_1)) > :ST_Area_1
    >>> result = conn.execute(s)
    >>> for row in result:
    ...     print row['name']
    Orta

And, like any other functions supported by GeoAlchemy, processing and
measurement functions can be applied to
:class:`geoalchemy2.elements.WKBElement`. For example::

    >>> s = select([lake_table], lake_table.c.name == 'Majeur')
    >>> result = conn.execute(s)
    >>> lake = result.fetchone()
    >>> bufferarea = conn.scalar(lake[lake_table.c.geom].ST_Buffer(2).ST_Area())
    >>> print '%s: %f' % (lake['name'], bufferarea)
    Majeur: 21.485781

Use Raster functions
--------------------

A few functions (like `ST_Transform()`, `ST_Union()`, `ST_SnapToGrid()`, ...) can be
used on both :class:`geoalchemy2.types.Geometry` and :class:`geoalchemy2.types.Raster`
types. In GeoAlchemy2, these functions are only defined for
:class:`Geometry` as it can not be defined for several types at the
same time. Thus using these functions on :class:`Raster` requires
minor tweaking to enforce the type by passing the `type_=Raster` argument to the
function:

    >>> s = select([func.ST_Transform(
                        lake_table.c.raster,
                        2154,
                        type_=Raster)
                    .label('transformed_raster')])

Further Reference
-----------------

* Spatial Functions Reference: :ref:`spatial_functions`
* Spatial Operators Reference: :ref:`spatial_operators`
* Elements Reference: :ref:`elements`