File: Hypergraph.java

package info (click to toggle)
geogebra 4.0.34.0%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, stretch
  • size: 23,640 kB
  • ctags: 31,326
  • sloc: java: 221,026; xml: 786; sh: 116; makefile: 31
file content (436 lines) | stat: -rw-r--r-- 19,506 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/*
 * Created on Oct 17, 2005
 *
 * Copyright (c) 2005, the JUNG Project and the Regents of the University 
 * of California
 * All rights reserved.
 *
 * This software is open-source under the BSD license; see either
 * "license.txt" or
 * http://jung.sourceforge.net/license.txt for a description.
 */
package edu.uci.ics.jung.graph;

import java.util.Collection;

import edu.uci.ics.jung.graph.util.EdgeType;

/**
 * A hypergraph, consisting of a set of vertices of type <code>V</code>
 * and a set of hyperedges of type <code>E</code> which connect the vertices.  
 * This is the base interface for all JUNG graph types.
 * <P>
 * This interface permits, but does not enforce, any of the following 
 * common variations of graphs:
 * <ul>
 * <li/>hyperedges (edges which connect a set of vertices of any size)
 * <li/>edges (these have have exactly two endpoints, which may or may not be distinct)
 * <li/>self-loops (edges which connect exactly one vertex)
 * <li> directed and undirected edges
 * <li> vertices and edges with attributes (for example, weighted edges)
 * <li> vertices and edges with different constraints or properties (for example, bipartite 
 *      or multimodal graphs)
 * <li> parallel edges (multiple edges which connect a single set of vertices)
 * <li> internal representations as matrices or as adjacency lists or adjacency maps
 * </ul> 
 * Extensions or implementations of this interface 
 * may enforce or disallow any or all of these variations.
 * <p><b>Notes</b>:
 * <ul>
 * <li/> The collections returned by <code>Hypergraph</code> instances
 * should be treated in general as if read-only.  While they are not contractually 
 * guaranteed (or required) to be immutable,
 * this interface does not define the outcome if they are mutated.
 * Mutations should be done via <code>{add,remove}{Edge,Vertex}</code>, or
 * in the constructor.
 * <li/> 
 * </ul>
 * 
 * @author Joshua O'Madadhain
 */
public interface Hypergraph<V, E>
{
    /**
     * Returns a view of all edges in this graph. In general, this
     * obeys the <code>Collection</code> contract, and therefore makes no guarantees 
     * about the ordering of the vertices within the set.
     * @return a <code>Collection</code> view of all edges in this graph
     */
    Collection<E> getEdges();
    
    /**
     * Returns a view of all vertices in this graph. In general, this
     * obeys the <code>Collection</code> contract, and therefore makes no guarantees 
     * about the ordering of the vertices within the set.
     * @return a <code>Collection</code> view of all vertices in this graph
     */
    Collection<V> getVertices();
    
    /**
     * Returns true if this graph's vertex collection contains <code>vertex</code>.
     * Equivalent to <code>getVertices().contains(vertex)</code>.
     * @param vertex the vertex whose presence is being queried
     * @return true iff this graph contains a vertex <code>vertex</code>
     */
    boolean containsVertex(V vertex);
    
    /**
     * Returns true if this graph's edge collection contains <code>edge</code>.
     * Equivalent to <code>getEdges().contains(edge)</code>.
     * @param edge the edge whose presence is being queried
     * @return true iff this graph contains an edge <code>edge</code>
     */
    boolean containsEdge(E edge);
    
    /**
     * Returns the number of edges in this graph.
     * @return the number of edges in this graph
     */
    int getEdgeCount();
    
    /**
     * Returns the number of vertices in this graph.
     * @return the number of vertices in this graph
     */
    int getVertexCount();

    /**
     * Returns the collection of vertices which are connected to <code>vertex</code>
     * via any edges in this graph.
     * If <code>vertex</code> is connected to itself with a self-loop, then 
     * it will be included in the collection returned.
     * 
     * @param vertex the vertex whose neighbors are to be returned
     * @return  the collection of vertices which are connected to <code>vertex</code>, 
     * or <code>null</code> if <code>vertex</code> is not present
     */
    Collection<V> getNeighbors(V vertex);
    
    /**
     * Returns the collection of edges in this graph which are connected to <code>vertex</code>.
     * 
     * @param vertex the vertex whose incident edges are to be returned
     * @return  the collection of edges which are connected to <code>vertex</code>, 
     * or <code>null</code> if <code>vertex</code> is not present
     */
    Collection<E> getIncidentEdges(V vertex);
    
    /**
     * Returns the collection of vertices in this graph which are connected to <code>edge</code>.
     * Note that for some graph types there are guarantees about the size of this collection
     * (i.e., some graphs contain edges that have exactly two endpoints, which may or may 
     * not be distinct).  Implementations for those graph types may provide alternate methods 
     * that provide more convenient access to the vertices.
     * 
     * @param edge the edge whose incident vertices are to be returned
     * @return  the collection of vertices which are connected to <code>edge</code>, 
     * or <code>null</code> if <code>edge</code> is not present
     */
    Collection<V> getIncidentVertices(E edge);
    
    /**
     * Returns an edge that connects this vertex to <code>v</code>.
     * If this edge is not uniquely
     * defined (that is, if the graph contains more than one edge connecting 
     * <code>v1</code> to <code>v2</code>), any of these edges 
     * may be returned.  <code>findEdgeSet(v1, v2)</code> may be 
     * used to return all such edges.
     * Returns null if either of the following is true:
     * <ul>
     * <li/><code>v2</code> is not connected to <code>v1</code>
     * <li/>either <code>v1</code> or <code>v2</code> are not present in this graph
     * </ul> 
     * <p><b>Note</b>: for purposes of this method, <code>v1</code> is only considered to be connected to
     * <code>v2</code> via a given <i>directed</i> edge <code>e</code> if
     * <code>v1 == e.getSource() && v2 == e.getDest()</code> evaluates to <code>true</code>.
     * (<code>v1</code> and <code>v2</code> are connected by an undirected edge <code>u</code> if 
     * <code>u</code> is incident to both <code>v1</code> and <code>v2</code>.)
     * 
     * @return  an edge that connects <code>v1</code> to <code>v2</code>, 
     * or <code>null</code> if no such edge exists (or either vertex is not present)
     * @see Hypergraph#findEdgeSet(Object, Object) 
     */
    E findEdge(V v1, V v2);
    
    /**
     * Returns all edges that connects this vertex to <code>v</code>.
     * If this edge is not uniquely
     * defined (that is, if the graph contains more than one edge connecting 
     * <code>v1</code> to <code>v2</code>), any of these edges 
     * may be returned.  <code>findEdgeSet(v1, v2)</code> may be 
     * used to return all such edges.
     * Returns null if <code>v2</code> is not connected to <code>v1</code>.
     * <br/>Returns an empty collection if either <code>v1</code> or <code>v2</code> are not present in this graph.
     *  
     * <p><b>Note</b>: for purposes of this method, <code>v1</code> is only considered to be connected to
     * <code>v2</code> via a given <i>directed</i> edge <code>d</code> if
     * <code>v1 == d.getSource() && v2 == d.getDest()</code> evaluates to <code>true</code>.
     * (<code>v1</code> and <code>v2</code> are connected by an undirected edge <code>u</code> if 
     * <code>u</code> is incident to both <code>v1</code> and <code>v2</code>.)
     * 
     * @return  a collection containing all edges that connect <code>v1</code> to <code>v2</code>, 
     * or <code>null</code> if either vertex is not present
     * @see Hypergraph#findEdge(Object, Object) 
     */
    Collection<E> findEdgeSet(V v1, V v2);
    
    /**
     * Adds <code>vertex</code> to this graph.
     * Fails if <code>vertex</code> is null or already in the graph.
     * 
     * @param vertex    the vertex to add
     * @return <code>true</code> if the add is successful, and <code>false</code> otherwise
     * @throws IllegalArgumentException if <code>vertex</code> is <code>null</code>
     */
    boolean addVertex(V vertex);
    
    /**
     * Adds <code>edge</code> to this graph.
     * Fails under the following circumstances:
     * <ul>
     * <li/><code>edge</code> is already an element of the graph 
     * <li/>either <code>edge</code> or <code>vertices</code> is <code>null</code>
     * <li/><code>vertices</code> has the wrong number of vertices for the graph type
     * <li/><code>vertices</code> are already connected by another edge in this graph,
     * and this graph does not accept parallel edges
     * </ul>
     * 
     * @param edge
     * @param vertices
     * @return <code>true</code> if the add is successful, and <code>false</code> otherwise
     * @throws IllegalArgumentException if <code>edge</code> or <code>vertices</code> is null, 
     * or if a different vertex set in this graph is already connected by <code>edge</code>, 
     * or if <code>vertices</code> are not a legal vertex set for <code>edge</code> 
     */
    boolean addEdge(E edge, Collection<? extends V> vertices);

    /**
     * Adds <code>edge</code> to this graph with type <code>edge_type</code>.
     * Fails under the following circumstances:
     * <ul>
     * <li/><code>edge</code> is already an element of the graph 
     * <li/>either <code>edge</code> or <code>vertices</code> is <code>null</code>
     * <li/><code>vertices</code> has the wrong number of vertices for the graph type
     * <li/><code>vertices</code> are already connected by another edge in this graph,
     * and this graph does not accept parallel edges
     * <li/><code>edge_type</code> is not legal for this graph
     * </ul>
     * 
     * @param edge
     * @param vertices
     * @return <code>true</code> if the add is successful, and <code>false</code> otherwise
     * @throws IllegalArgumentException if <code>edge</code> or <code>vertices</code> is null, 
     * or if a different vertex set in this graph is already connected by <code>edge</code>, 
     * or if <code>vertices</code> are not a legal vertex set for <code>edge</code> 
     */
    boolean addEdge(E edge, Collection<? extends V> vertices, EdgeType 
    		edge_type);
    
    /**
     * Removes <code>vertex</code> from this graph.
     * As a side effect, removes any edges <code>e</code> incident to <code>vertex</code> if the 
     * removal of <code>vertex</code> would cause <code>e</code> to be incident to an illegal
     * number of vertices.  (Thus, for example, incident hyperedges are not removed, but 
     * incident edges--which must be connected to a vertex at both endpoints--are removed.) 
     * 
     * <p>Fails under the following circumstances:
     * <ul>
     * <li/><code>vertex</code> is not an element of this graph
     * <li/><code>vertex</code> is <code>null</code>
     * </ul>
     * 
     * @param vertex the vertex to remove
     * @return <code>true</code> if the removal is successful, <code>false</code> otherwise
     */
    boolean removeVertex(V vertex);

    /**
     * Removes <code>edge</code> from this graph.
     * Fails if <code>edge</code> is null, or is otherwise not an element of this graph.
     * 
     * @param edge the edge to remove
     * @return <code>true</code> if the removal is successful, <code>false</code> otherwise
     */
    boolean removeEdge(E edge);

    
    /**
     * Returns <code>true</code> if <code>v1</code> and <code>v2</code> share an incident edge.
     * Equivalent to <code>getNeighbors(v1).contains(v2)</code>.
     * 
     * @param v1 the first vertex to test
     * @param v2 the second vertex to test
     * @return <code>true</code> if <code>v1</code> and <code>v2</code> share an incident edge
     */
    boolean isNeighbor(V v1, V v2);

    /**
     * Returns <code>true</code> if <code>vertex</code> and <code>edge</code> 
     * are incident to each other.
     * Equivalent to <code>getIncidentEdges(vertex).contains(edge)</code> and to
     * <code>getIncidentVertices(edge).contains(vertex)</code>.
     * @param vertex
     * @param edge
     * @return <code>true</code> if <code>vertex</code> and <code>edge</code> 
     * are incident to each other
     */
    boolean isIncident(V vertex, E edge);
    
    /**
     * Returns the number of edges incident to <code>vertex</code>.  
     * Special cases of interest:
     * <ul>
     * <li/> Incident self-loops are counted once.
     * <li> If there is only one edge that connects this vertex to
     * each of its neighbors (and vice versa), then the value returned 
     * will also be equal to the number of neighbors that this vertex has
     * (that is, the output of <code>getNeighborCount</code>).
     * <li> If the graph is directed, then the value returned will be 
     * the sum of this vertex's indegree (the number of edges whose 
     * destination is this vertex) and its outdegree (the number
     * of edges whose source is this vertex), minus the number of
     * incident self-loops (to avoid double-counting).
     * </ul>
     * <p>Equivalent to <code>getIncidentEdges(vertex).size()</code>.
     * 
     * @param vertex the vertex whose degree is to be returned
     * @return the degree of this node
     * @see Hypergraph#getNeighborCount(Object)
     */
    int degree(V vertex);

    /**
     * Returns the number of vertices that are adjacent to <code>vertex</code>
     * (that is, the number of vertices that are incident to edges in <code>vertex</code>'s
     * incident edge set).
     * 
     * <p>Equivalent to <code>getNeighbors(vertex).size()</code>.
     * @param vertex the vertex whose neighbor count is to be returned
     * @return the number of neighboring vertices
     */
    int getNeighborCount(V vertex);
    
    /**
     * Returns the number of vertices that are incident to <code>edge</code>.
     * For hyperedges, this can be any nonnegative integer; for edges this
     * must be 2 (or 1 if self-loops are permitted). 
     * 
     * <p>Equivalent to <code>getIncidentVertices(edge).size()</code>.
     * @param edge the edge whose incident vertex count is to be returned
     * @return the number of vertices that are incident to <code>edge</code>.
     */
    int getIncidentCount(E edge);
    
    /**
     * Returns the edge type of <code>edge</code> in this graph.
     * @param edge
     * @return the <code>EdgeType</code> of <code>edge</code>, or <code>null</code> if <code>edge</code> has no defined type
     */
    EdgeType getEdgeType(E edge); 
    
    /**
     * Returns the default edge type for this graph.
     * 
     * @return the default edge type for this graph
     */
    EdgeType getDefaultEdgeType();
    
    /**
     * Returns the collection of edges in this graph which are of type <code>edge_type</code>.
     * @param edge_type the type of edges to be returned
     * @return the collection of edges which are of type <code>edge_type</code>, or
     * <code>null</code> if the graph does not accept edges of this type
     * @see EdgeType
     */
    Collection<E> getEdges(EdgeType edge_type);
    
    /**
     * Returns the number of edges of type <code>edge_type</code> in this graph.
     * @param edge_type the type of edge for which the count is to be returned
     * @return the number of edges of type <code>edge_type</code> in this graph
     */
    int getEdgeCount(EdgeType edge_type);
    
    /**
     * Returns a <code>Collection</code> view of the incoming edges incident to <code>vertex</code>
     * in this graph.
     * @param vertex    the vertex whose incoming edges are to be returned
     * @return  a <code>Collection</code> view of the incoming edges incident 
     * to <code>vertex</code> in this graph
     */
    Collection<E> getInEdges(V vertex);
    
    /**
     * Returns a <code>Collection</code> view of the outgoing edges incident to <code>vertex</code>
     * in this graph.
     * @param vertex    the vertex whose outgoing edges are to be returned
     * @return  a <code>Collection</code> view of the outgoing edges incident 
     * to <code>vertex</code> in this graph
     */
    Collection<E> getOutEdges(V vertex);
    
    /**
     * Returns the number of incoming edges incident to <code>vertex</code>.
     * Equivalent to <code>getInEdges(vertex).size()</code>.
     * @param vertex    the vertex whose indegree is to be calculated
     * @return  the number of incoming edges incident to <code>vertex</code>
     */
    int inDegree(V vertex);
    
    /**
     * Returns the number of outgoing edges incident to <code>vertex</code>.
     * Equivalent to <code>getOutEdges(vertex).size()</code>.
     * @param vertex    the vertex whose outdegree is to be calculated
     * @return  the number of outgoing edges incident to <code>vertex</code>
     */
    int outDegree(V vertex);
    
    /**
     * If <code>directed_edge</code> is a directed edge in this graph, returns the source; 
     * otherwise returns <code>null</code>. 
     * The source of a directed edge <code>d</code> is defined to be the vertex for which  
     * <code>d</code> is an outgoing edge.
     * <code>directed_edge</code> is guaranteed to be a directed edge if 
     * its <code>EdgeType</code> is <code>DIRECTED</code>. 
     * @param directed_edge
     * @return  the source of <code>directed_edge</code> if it is a directed edge in this graph, or <code>null</code> otherwise
     */
    V getSource(E directed_edge);

    /**
     * If <code>directed_edge</code> is a directed edge in this graph, returns the destination; 
     * otherwise returns <code>null</code>. 
     * The destination of a directed edge <code>d</code> is defined to be the vertex 
     * incident to <code>d</code> for which  
     * <code>d</code> is an incoming edge.
     * <code>directed_edge</code> is guaranteed to be a directed edge if 
     * its <code>EdgeType</code> is <code>DIRECTED</code>. 
     * @param directed_edge
     * @return  the destination of <code>directed_edge</code> if it is a directed edge in this graph, or <code>null</code> otherwise
     */
    V getDest(E directed_edge);

    /**
     * Returns a <code>Collection</code> view of the predecessors of <code>vertex</code> 
     * in this graph.  A predecessor of <code>vertex</code> is defined as a vertex <code>v</code> 
     * which is connected to 
     * <code>vertex</code> by an edge <code>e</code>, where <code>e</code> is an outgoing edge of 
     * <code>v</code> and an incoming edge of <code>vertex</code>.
     * @param vertex    the vertex whose predecessors are to be returned
     * @return  a <code>Collection</code> view of the predecessors of 
     * <code>vertex</code> in this graph
     */
    Collection<V> getPredecessors(V vertex);
    
    /**
     * Returns a <code>Collection</code> view of the successors of <code>vertex</code> 
     * in this graph.  A successor of <code>vertex</code> is defined as a vertex <code>v</code> 
     * which is connected to 
     * <code>vertex</code> by an edge <code>e</code>, where <code>e</code> is an incoming edge of 
     * <code>v</code> and an outgoing edge of <code>vertex</code>.
     * @param vertex    the vertex whose predecessors are to be returned
     * @return  a <code>Collection</code> view of the successors of 
     * <code>vertex</code> in this graph
     */
    Collection<V> getSuccessors(V vertex);
}