File: EllipticFunction.h

package info (click to toggle)
geographiclib 1.37-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 9,688 kB
  • ctags: 4,871
  • sloc: cpp: 31,440; sh: 11,632; cs: 9,411; ansic: 1,428; java: 1,333; python: 1,131; makefile: 758; xml: 381; pascal: 30
file content (698 lines) | stat: -rw-r--r-- 28,676 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
/**
 * \file NETGeographicLib/EllipticFunction.h
 * \brief Header for NETGeographicLib::EllipticFunction class
 *
 * NETGeographicLib is copyright (c) Scott Heiman (2013)
 * GeographicLib is Copyright (c) Charles Karney (2010-2012)
 * <charles@karney.com> and licensed under the MIT/X11 License.
 * For more information, see
 * http://geographiclib.sourceforge.net/
 **********************************************************************/
#pragma once

namespace NETGeographicLib
{
  /**
   * \brief .NET wrapper for GeographicLib::EllipticFunction.
   *
   * This class allows .NET applications to access GeographicLib::EllipticFunction.
   *
   * This provides the elliptic functions and integrals needed for Ellipsoid,
   * GeodesicExact, and TransverseMercatorExact.  Two categories of function
   * are provided:
   * - \e static functions to compute symmetric elliptic integrals
   *   (http://dlmf.nist.gov/19.16.i)
   * - \e member functions to compute Legrendre's elliptic
   *   integrals (http://dlmf.nist.gov/19.2.ii) and the
   *   Jacobi elliptic functions (http://dlmf.nist.gov/22.2).
   * .
   * In the latter case, an object is constructed giving the modulus \e k (and
   * optionally the parameter &alpha;<sup>2</sup>).  The modulus is always
   * passed as its square <i>k</i><sup>2</sup> which allows \e k to be pure
   * imaginary (<i>k</i><sup>2</sup> &lt; 0).  (Confusingly, Abramowitz and
   * Stegun call \e m = <i>k</i><sup>2</sup> the "parameter" and \e n =
   * &alpha;<sup>2</sup> the "characteristic".)
   *
   * In geodesic applications, it is convenient to separate the incomplete
   * integrals into secular and periodic components, e.g.,
   * \f[
   *   E(\phi, k) = (2 E(\phi) / \pi) [ \phi + \delta E(\phi, k) ]
   * \f]
   * where &delta;\e E(&phi;, \e k) is an odd periodic function with period
   * &pi;.
   *
   * The computation of the elliptic integrals uses the algorithms given in
   * - B. C. Carlson,
   *   <a href="http://dx.doi.org/10.1007/BF02198293"> Computation of real or
   *   complex elliptic integrals</a>, Numerical Algorithms 10, 13--26 (1995)
   * .
   * with the additional optimizations given in http://dlmf.nist.gov/19.36.i.
   * The computation of the Jacobi elliptic functions uses the algorithm given
   * in
   * - R. Bulirsch,
   *   <a href="http://dx.doi.org/10.1007/BF01397975"> Numerical Calculation of
   *   Elliptic Integrals and Elliptic Functions</a>, Numericshe Mathematik 7,
   *   78--90 (1965).
   * .
   * The notation follows http://dlmf.nist.gov/19 and http://dlmf.nist.gov/22
   *
   * C# Example:
   * \include example-EllipticFunction.cs
   * Managed C++ Example:
   * \include example-EllipticFunction.cpp
   * Visual Basic Example:
   * \include example-EllipticFunction.vb
   *
   * <B>INTERFACE DIFFERENCES:</B><BR>
   * The k2, kp2, alpha2, and alphap2 functions are implemented as properties.
   **********************************************************************/
    public ref class EllipticFunction
    {
    private:
        // a pointer to the unmanaged GeographicLib::EllipticFunction.
        GeographicLib::EllipticFunction* m_pEllipticFunction;

        // The finalizer frees the unmanaged memory.
        !EllipticFunction();
    public:
        /** \name Constructor
         **********************************************************************/
        ///@{
        /**
         * Constructor specifying the modulus and parameter.
         *
         * @param[in] k2 the square of the modulus <i>k</i><sup>2</sup>.
         *   <i>k</i><sup>2</sup> must lie in (-&infin;, 1).  (No checking is
         *   done.)
         * @param[in] alpha2 the parameter &alpha;<sup>2</sup>.
         *   &alpha;<sup>2</sup> must lie in (-&infin;, 1).  (No checking is done.)
         *
         * If only elliptic integrals of the first and second kinds are needed,
         * then set &alpha;<sup>2</sup> = 0 (the default value); in this case, we
         * have &Pi;(&phi;, 0, \e k) = \e F(&phi;, \e k), \e G(&phi;, 0, \e k) = \e
         * E(&phi;, \e k), and \e H(&phi;, 0, \e k) = \e F(&phi;, \e k) - \e
         * D(&phi;, \e k).
         **********************************************************************/
        EllipticFunction(double k2, double alpha2 );

        /**
         * Constructor specifying the modulus and parameter and their complements.
         *
         * @param[in] k2 the square of the modulus <i>k</i><sup>2</sup>.
         *   <i>k</i><sup>2</sup> must lie in (-&infin;, 1).  (No checking is
         *   done.)
         * @param[in] alpha2 the parameter &alpha;<sup>2</sup>.
         *   &alpha;<sup>2</sup> must lie in (-&infin;, 1).  (No checking is done.)
         * @param[in] kp2 the complementary modulus squared <i>k'</i><sup>2</sup> =
         *   1 &minus; <i>k</i><sup>2</sup>.
         * @param[in] alphap2 the complementary parameter &alpha;'<sup>2</sup> = 1
         *   &minus; &alpha;<sup>2</sup>.
         *
         * The arguments must satisfy \e k2 + \e kp2 = 1 and \e alpha2 + \e alphap2
         * = 1.  (No checking is done that these conditions are met.)  This
         * constructor is provided to enable accuracy to be maintained, e.g., when
         * \e k is very close to unity.
         **********************************************************************/
        EllipticFunction(double k2, double alpha2, double kp2, double alphap2);

        /**
         * Destructor calls the finalizer.
         **********************************************************************/
        ~EllipticFunction()
        { this->!EllipticFunction(); }

        /**
         * Reset the modulus and parameter.
         *
         * @param[in] k2 the new value of square of the modulus
         *   <i>k</i><sup>2</sup> which must lie in (-&infin;, 1).  (No checking is
         *   done.)
         * @param[in] alpha2 the new value of parameter &alpha;<sup>2</sup>.
         *   &alpha;<sup>2</sup> must lie in (-&infin;, 1).  (No checking is done.)
         **********************************************************************/
        void Reset(double k2, double alpha2 );

        /**
         * Reset the modulus and parameter supplying also their complements.
         *
         * @param[in] k2 the square of the modulus <i>k</i><sup>2</sup>.
         *   <i>k</i><sup>2</sup> must lie in (-&infin;, 1).  (No checking is
         *   done.)
         * @param[in] alpha2 the parameter &alpha;<sup>2</sup>.
         *   &alpha;<sup>2</sup> must lie in (-&infin;, 1).  (No checking is done.)
         * @param[in] kp2 the complementary modulus squared <i>k'</i><sup>2</sup> =
         *   1 &minus; <i>k</i><sup>2</sup>.
         * @param[in] alphap2 the complementary parameter &alpha;'<sup>2</sup> = 1
         *   &minus; &alpha;<sup>2</sup>.
         *
         * The arguments must satisfy \e k2 + \e kp2 = 1 and \e alpha2 + \e alphap2
         * = 1.  (No checking is done that these conditions are met.)  This
         * constructor is provided to enable accuracy to be maintained, e.g., when
         * is very small.
         **********************************************************************/
        void Reset(double k2, double alpha2, double kp2, double alphap2);

        ///@}

        /** \name Inspector functions.
         **********************************************************************/
        ///@{
        /**
         * @return the square of the modulus <i>k</i><sup>2</sup>.
         **********************************************************************/
        property double k2 { double get(); }

        /**
         * @return the square of the complementary modulus <i>k'</i><sup>2</sup> =
         *   1 &minus; <i>k</i><sup>2</sup>.
         **********************************************************************/
        property double kp2 { double get(); }

        /**
         * @return the parameter &alpha;<sup>2</sup>.
         **********************************************************************/
        property double alpha2 { double get(); }

        /**
         * @return the complementary parameter &alpha;'<sup>2</sup> = 1 &minus;
         *   &alpha;<sup>2</sup>.
         **********************************************************************/
        property double alphap2 { double get(); }
        ///@}

        /** \name Complete elliptic integrals.
         **********************************************************************/
        ///@{
        /**
         * The complete integral of the first kind.
         *
         * @return \e K(\e k).
         *
         * \e K(\e k) is defined in http://dlmf.nist.gov/19.2.E4
         * \f[
         *   K(k) = \int_0^{\pi/2} \frac1{\sqrt{1-k^2\sin^2\phi}}\,d\phi.
         * \f]
         **********************************************************************/
        double K();

        /**
         * The complete integral of the second kind.
         *
         * @return \e E(\e k)
         *
         * \e E(\e k) is defined in http://dlmf.nist.gov/19.2.E5
         * \f[
         *   E(k) = \int_0^{\pi/2} \sqrt{1-k^2\sin^2\phi}\,d\phi.
         * \f]
         **********************************************************************/
        double E();

        /**
         * Jahnke's complete integral.
         *
         * @return \e D(\e k).
         *
         * \e D(\e k) is defined in http://dlmf.nist.gov/19.2.E6
         * \f[
         *   D(k) = \int_0^{\pi/2} \frac{\sin^2\phi}{\sqrt{1-k^2\sin^2\phi}}\,d\phi.
         * \f]
         **********************************************************************/
        double D();

        /**
         * The difference between the complete integrals of the first and second
         * kinds.
         *
         * @return \e K(\e k) &minus; \e E(\e k).
         **********************************************************************/
        double KE();

        /**
         * The complete integral of the third kind.
         *
         * @return &Pi;(&alpha;<sup>2</sup>, \e k)
         *
         * &Pi;(&alpha;<sup>2</sup>, \e k) is defined in
         * http://dlmf.nist.gov/19.2.E7
         * \f[
         *   \Pi(\alpha^2, k) = \int_0^{\pi/2}
         *     \frac1{\sqrt{1-k^2\sin^2\phi}(1 - \alpha^2\sin^2\phi_)}\,d\phi.
         * \f]
         **********************************************************************/
        double Pi();

        /**
         * Legendre's complete geodesic longitude integral.
         *
         * @return \e G(&alpha;<sup>2</sup>, \e k)
         *
         * \e G(&alpha;<sup>2</sup>, \e k) is given by
         * \f[
         *   G(\alpha^2, k) = \int_0^{\pi/2}
         *     \frac{\sqrt{1-k^2\sin^2\phi}}{1 - \alpha^2\sin^2\phi}\,d\phi.
         * \f]
         **********************************************************************/
        double G();

        /**
         * Cayley's complete geodesic longitude difference integral.
         *
         * @return \e H(&alpha;<sup>2</sup>, \e k)
         *
         * \e H(&alpha;<sup>2</sup>, \e k) is given by
         * \f[
         *   H(\alpha^2, k) = \int_0^{\pi/2}
         *     \frac{\cos^2\phi}{(1-\alpha^2\sin^2\phi)\sqrt{1-k^2\sin^2\phi}}
         *     \,d\phi.
         * \f]
         **********************************************************************/
        double H();
        ///@}

        /** \name Incomplete elliptic integrals.
         **********************************************************************/
        ///@{
        /**
         * The incomplete integral of the first kind.
         *
         * @param[in] phi
         * @return \e F(&phi;, \e k).
         *
         * \e F(&phi;, \e k) is defined in http://dlmf.nist.gov/19.2.E4
         * \f[
         *   F(\phi, k) = \int_0^\phi \frac1{\sqrt{1-k^2\sin^2\theta}}\,d\theta.
         * \f]
         **********************************************************************/
        double F(double phi);

        /**
         * The incomplete integral of the second kind.
         *
         * @param[in] phi
         * @return \e E(&phi;, \e k).
         *
         * \e E(&phi;, \e k) is defined in http://dlmf.nist.gov/19.2.E5
         * \f[
         *   E(\phi, k) = \int_0^\phi \sqrt{1-k^2\sin^2\theta}\,d\theta.
         * \f]
         **********************************************************************/
        double E(double phi);

        /**
         * The incomplete integral of the second kind with the argument given in
         * degrees.
         *
         * @param[in] ang in <i>degrees</i>.
         * @return \e E(&pi; <i>ang</i>/180, \e k).
         **********************************************************************/
        double Ed(double ang);

        /**
         * The inverse of the incomplete integral of the second kind.
         *
         * @param[in] x
         * @return &phi; = <i>E</i><sup>&minus;1</sup>(\e x, \e k); i.e., the
         *   solution of such that \e E(&phi;, \e k) = \e x.
         **********************************************************************/
        double Einv(double x);

        /**
         * The incomplete integral of the third kind.
         *
         * @param[in] phi
         * @return &Pi;(&phi;, &alpha;<sup>2</sup>, \e k).
         *
         * &Pi;(&phi;, &alpha;<sup>2</sup>, \e k) is defined in
         * http://dlmf.nist.gov/19.2.E7
         * \f[
         *   \Pi(\phi, \alpha^2, k) = \int_0^\phi
         *     \frac1{\sqrt{1-k^2\sin^2\theta}(1 - \alpha^2\sin^2\theta_)}\,d\theta.
         * \f]
         **********************************************************************/
        double Pi(double phi);

        /**
         * Jahnke's incomplete elliptic integral.
         *
         * @param[in] phi
         * @return \e D(&phi;, \e k).
         *
         * \e D(&phi;, \e k) is defined in http://dlmf.nist.gov/19.2.E4
         * \f[
         *   D(\phi, k) = \int_0^\phi
         *    \frac{\sin^2\theta}{\sqrt{1-k^2\sin^2\theta}}\,d\theta.
         * \f]
         **********************************************************************/
        double D(double phi);

        /**
         * Legendre's geodesic longitude integral.
         *
         * @param[in] phi
         * @return \e G(&phi;, &alpha;<sup>2</sup>, \e k).
         *
         * \e G(&phi;, &alpha;<sup>2</sup>, \e k) is defined by
         * \f[
         *   \begin{aligned}
         *   G(\phi, \alpha^2, k) &=
         *   \frac{k^2}{\alpha^2} F(\phi, k) +
         *      \biggl(1 - \frac{k^2}{\alpha^2}\biggr) \Pi(\phi, \alpha^2, k) \\
         *    &= \int_0^\phi
         *     \frac{\sqrt{1-k^2\sin^2\theta}}{1 - \alpha^2\sin^2\theta}\,d\theta.
         *   \end{aligned}
         * \f]
         *
         * Legendre expresses the longitude of a point on the geodesic in terms of
         * this combination of elliptic integrals in Exercices de Calcul
         * Int&eacute;gral, Vol. 1 (1811), p. 181,
         * http://books.google.com/books?id=riIOAAAAQAAJ&pg=PA181.
         *
         * See \ref geodellip for the expression for the longitude in terms of this
         * function.
         **********************************************************************/
        double G(double phi);

        /**
         * Cayley's geodesic longitude difference integral.
         *
         * @param[in] phi
         * @return \e H(&phi;, &alpha;<sup>2</sup>, \e k).
         *
         * \e H(&phi;, &alpha;<sup>2</sup>, \e k) is defined by
         * \f[
         *   \begin{aligned}
         *   H(\phi, \alpha^2, k) &=
         *   \frac1{\alpha^2} F(\phi, k) +
         *        \biggl(1 - \frac1{\alpha^2}\biggr) \Pi(\phi, \alpha^2, k) \\
         *   &= \int_0^\phi
         *     \frac{\cos^2\theta}{(1-\alpha^2\sin^2\theta)\sqrt{1-k^2\sin^2\theta}}
         *     \,d\theta.
         *   \end{aligned}
         * \f]
         *
         * Cayley expresses the longitude difference of a point on the geodesic in
         * terms of this combination of elliptic integrals in Phil. Mag. <b>40</b>
         * (1870), p. 333, http://books.google.com/books?id=Zk0wAAAAIAAJ&pg=PA333.
         *
         * See \ref geodellip for the expression for the longitude in terms of this
         * function.
         **********************************************************************/
        double H(double phi);
        ///@}

        /** \name Incomplete integrals in terms of Jacobi elliptic functions.
         **********************************************************************/
        /**
         * The incomplete integral of the first kind in terms of Jacobi elliptic
         * functions.
         *
         * @param[in] sn = sin&phi;
         * @param[in] cn = cos&phi;
         * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
         *   sin<sup>2</sup>&phi;)
         * @return \e F(&phi;, \e k) as though &phi; &isin; (&minus;&pi;, &pi;].
         **********************************************************************/
        double F(double sn, double cn, double dn);

        /**
         * The incomplete integral of the second kind in terms of Jacobi elliptic
         * functions.
         *
         * @param[in] sn = sin&phi;
         * @param[in] cn = cos&phi;
         * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
         *   sin<sup>2</sup>&phi;)
         * @return \e E(&phi;, \e k) as though &phi; &isin; (&minus;&pi;, &pi;].
         **********************************************************************/
        double E(double sn, double cn, double dn);

        /**
         * The incomplete integral of the third kind in terms of Jacobi elliptic
         * functions.
         *
         * @param[in] sn = sin&phi;
         * @param[in] cn = cos&phi;
         * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
         *   sin<sup>2</sup>&phi;)
         * @return &Pi;(&phi;, &alpha;<sup>2</sup>, \e k) as though &phi; &isin;
         *   (&minus;&pi;, &pi;].
         **********************************************************************/
        double Pi(double sn, double cn, double dn);

        /**
         * Jahnke's incomplete elliptic integral in terms of Jacobi elliptic
         * functions.
         *
         * @param[in] sn = sin&phi;
         * @param[in] cn = cos&phi;
         * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
         *   sin<sup>2</sup>&phi;)
         * @return \e D(&phi;, \e k) as though &phi; &isin; (&minus;&pi;, &pi;].
         **********************************************************************/
        double D(double sn, double cn, double dn);

        /**
         * Legendre's geodesic longitude integral in terms of Jacobi elliptic
         * functions.
         *
         * @param[in] sn = sin&phi;
         * @param[in] cn = cos&phi;
         * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
         *   sin<sup>2</sup>&phi;)
         * @return \e G(&phi;, &alpha;<sup>2</sup>, \e k) as though &phi; &isin;
         *   (&minus;&pi;, &pi;].
         **********************************************************************/
        double G(double sn, double cn, double dn);

        /**
         * Cayley's geodesic longitude difference integral in terms of Jacobi
         * elliptic functions.
         *
         * @param[in] sn = sin&phi;
         * @param[in] cn = cos&phi;
         * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
         *   sin<sup>2</sup>&phi;)
         * @return \e H(&phi;, &alpha;<sup>2</sup>, \e k) as though &phi; &isin;
         *   (&minus;&pi;, &pi;].
         **********************************************************************/
        double H(double sn, double cn, double dn);
        ///@}

        /** \name Periodic versions of incomplete elliptic integrals.
         **********************************************************************/
        ///@{
        /**
         * The periodic incomplete integral of the first kind.
         *
         * @param[in] sn = sin&phi;
         * @param[in] cn = cos&phi;
         * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
         *   sin<sup>2</sup>&phi;)
         * @return the periodic function &pi; \e F(&phi;, \e k) / (2 \e K(\e k)) -
         *   &phi;
         **********************************************************************/
        double deltaF(double sn, double cn, double dn);

        /**
         * The periodic incomplete integral of the second kind.
         *
         * @param[in] sn = sin&phi;
         * @param[in] cn = cos&phi;
         * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
         *   sin<sup>2</sup>&phi;)
         * @return the periodic function &pi; \e E(&phi;, \e k) / (2 \e E(\e k)) -
         *   &phi;
         **********************************************************************/
        double deltaE(double sn, double cn, double dn);

        /**
         * The periodic inverse of the incomplete integral of the second kind.
         *
         * @param[in] stau = sin&tau;
         * @param[in] ctau = sin&tau;
         * @return the periodic function <i>E</i><sup>&minus;1</sup>(&tau; (2 \e
         *   E(\e k)/&pi;), \e k) - &tau;
         **********************************************************************/
        double deltaEinv(double stau, double ctau);

        /**
         * The periodic incomplete integral of the third kind.
         *
         * @param[in] sn = sin&phi;
         * @param[in] cn = cos&phi;
         * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
         *   sin<sup>2</sup>&phi;)
         * @return the periodic function &pi; &Pi;(&phi;, \e k) / (2 &Pi;(\e k)) -
         *   &phi;
         **********************************************************************/
        double deltaPi(double sn, double cn, double dn);

        /**
         * The periodic Jahnke's incomplete elliptic integral.
         *
         * @param[in] sn = sin&phi;
         * @param[in] cn = cos&phi;
         * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
         *   sin<sup>2</sup>&phi;)
         * @return the periodic function &pi; \e D(&phi;, \e k) / (2 \e D(\e k)) -
         *   &phi;
         **********************************************************************/
        double deltaD(double sn, double cn, double dn);

        /**
         * Legendre's periodic geodesic longitude integral.
         *
         * @param[in] sn = sin&phi;
         * @param[in] cn = cos&phi;
         * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
         *   sin<sup>2</sup>&phi;)
         * @return the periodic function &pi; \e G(&phi;, \e k) / (2 \e G(\e k)) -
         *   &phi;
         **********************************************************************/
        double deltaG(double sn, double cn, double dn);

        /**
         * Cayley's periodic geodesic longitude difference integral.
         *
         * @param[in] sn = sin&phi;
         * @param[in] cn = cos&phi;
         * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
         *   sin<sup>2</sup>&phi;)
         * @return the periodic function &pi; \e H(&phi;, \e k) / (2 \e H(\e k)) -
         *   &phi;
         **********************************************************************/
        double deltaH(double sn, double cn, double dn);
        ///@}

        /** \name Elliptic functions.
         **********************************************************************/
        ///@{
        /**
         * The Jacobi elliptic functions.
         *
         * @param[in] x the argument.
         * @param[out] sn sn(\e x, \e k).
         * @param[out] cn cn(\e x, \e k).
         * @param[out] dn dn(\e x, \e k).
         **********************************************************************/
        void sncndn(double x,
            [System::Runtime::InteropServices::Out] double% sn,
            [System::Runtime::InteropServices::Out] double% cn,
            [System::Runtime::InteropServices::Out] double% dn);

        /**
         * The &Delta; amplitude function.
         *
         * @param[in] sn sin&phi;
         * @param[in] cn cos&phi;
         * @return &Delta; = sqrt(1 &minus; <i>k</i><sup>2</sup>
         *   sin<sup>2</sup>&phi;)
         **********************************************************************/
        double Delta(double sn, double cn);
        ///@}

        /** \name Symmetric elliptic integrals.
         **********************************************************************/
        ///@{
        /**
         * Symmetric integral of the first kind <i>R<sub>F</sub></i>.
         *
         * @param[in] x
         * @param[in] y
         * @param[in] z
         * @return <i>R<sub>F</sub></i>(\e x, \e y, \e z)
         *
         * <i>R<sub>F</sub></i> is defined in http://dlmf.nist.gov/19.16.E1
         * \f[ R_F(x, y, z) = \frac12
         *       \int_0^\infty\frac1{\sqrt{(t + x) (t + y) (t + z)}}\, dt \f]
         * If one of the arguments is zero, it is more efficient to call the
         * two-argument version of this function with the non-zero arguments.
         **********************************************************************/
        static double RF(double x, double y, double z);

        /**
         * Complete symmetric integral of the first kind, <i>R<sub>F</sub></i> with
         * one argument zero.
         *
         * @param[in] x
         * @param[in] y
         * @return <i>R<sub>F</sub></i>(\e x, \e y, 0)
         **********************************************************************/
        static double RF(double x, double y);

        /**
         * Degenerate symmetric integral of the first kind <i>R<sub>C</sub></i>.
         *
         * @param[in] x
         * @param[in] y
         * @return <i>R<sub>C</sub></i>(\e x, \e y) = <i>R<sub>F</sub></i>(\e x, \e
         *   y, \e y)
         *
         * <i>R<sub>C</sub></i> is defined in http://dlmf.nist.gov/19.2.E17
         * \f[ R_C(x, y) = \frac12
         *       \int_0^\infty\frac1{\sqrt{t + x}(t + y)}\,dt \f]
         **********************************************************************/
        static double RC(double x, double y);

        /**
         * Symmetric integral of the second kind <i>R<sub>G</sub></i>.
         *
         * @param[in] x
         * @param[in] y
         * @param[in] z
         * @return <i>R<sub>G</sub></i>(\e x, \e y, \e z)
         *
         * <i>R<sub>G</sub></i> is defined in Carlson, eq 1.5
         * \f[ R_G(x, y, z) = \frac14
         *       \int_0^\infty[(t + x) (t + y) (t + z)]^{-1/2}
         *        \biggl(
         *             \frac x{t + x} + \frac y{t + y} + \frac z{t + z}
         *        \biggr)t\,dt \f]
         * See also http://dlmf.nist.gov/19.16.E3.
         * If one of the arguments is zero, it is more efficient to call the
         * two-argument version of this function with the non-zero arguments.
         **********************************************************************/
        static double RG(double x, double y, double z);

        /**
         * Complete symmetric integral of the second kind, <i>R<sub>G</sub></i>
         * with one argument zero.
         *
         * @param[in] x
         * @param[in] y
         * @return <i>R<sub>G</sub></i>(\e x, \e y, 0)
         **********************************************************************/
        static double RG(double x, double y);

        /**
         * Symmetric integral of the third kind <i>R<sub>J</sub></i>.
         *
         * @param[in] x
         * @param[in] y
         * @param[in] z
         * @param[in] p
         * @return <i>R<sub>J</sub></i>(\e x, \e y, \e z, \e p)
         *
         * <i>R<sub>J</sub></i> is defined in http://dlmf.nist.gov/19.16.E2
         * \f[ R_J(x, y, z, p) = \frac32
         *       \int_0^\infty[(t + x) (t + y) (t + z)]^{-1/2} (t + p)^{-1}\, dt \f]
         **********************************************************************/
        static double RJ(double x, double y, double z, double p);

        /**
         * Degenerate symmetric integral of the third kind <i>R<sub>D</sub></i>.
         *
         * @param[in] x
         * @param[in] y
         * @param[in] z
         * @return <i>R<sub>D</sub></i>(\e x, \e y, \e z) = <i>R<sub>J</sub></i>(\e
         *   x, \e y, \e z, \e z)
         *
         * <i>R<sub>D</sub></i> is defined in http://dlmf.nist.gov/19.16.E5
         * \f[ R_D(x, y, z) = \frac32
         *       \int_0^\infty[(t + x) (t + y)]^{-1/2} (t + z)^{-3/2}\, dt \f]
         **********************************************************************/
        static double RD(double x, double y, double z);
        ///@}
    };
} // namespace NETGeographicLib