File: Geocentric.h

package info (click to toggle)
geographiclib 1.37-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 9,688 kB
  • ctags: 4,871
  • sloc: cpp: 31,440; sh: 11,632; cs: 9,411; ansic: 1,428; java: 1,333; python: 1,131; makefile: 758; xml: 381; pascal: 30
file content (227 lines) | stat: -rw-r--r-- 10,592 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/**
 * \file NETGeographicLib/Geocentric.h
 * \brief Header for NETGeographicLib::Geocentric class
 *
 * NETGeographicLib is copyright (c) Scott Heiman (2013)
 * GeographicLib is Copyright (c) Charles Karney (2010-2012)
 * <charles@karney.com> and licensed under the MIT/X11 License.
 * For more information, see
 * http://geographiclib.sourceforge.net/
 **********************************************************************/
#pragma once

namespace NETGeographicLib
{
  /**
   * \brief .NET wrapper for GeographicLib::Geocentric.
   *
   * This class allows .NET applications to access GeographicLib::Geocentric.
   *
   * Convert between geodetic coordinates latitude = \e lat, longitude = \e
   * lon, height = \e h (measured vertically from the surface of the ellipsoid)
   * to geocentric coordinates (\e X, \e Y, \e Z).  The origin of geocentric
   * coordinates is at the center of the earth.  The \e Z axis goes thru the
   * north pole, \e lat = 90&deg;.  The \e X axis goes thru \e lat = 0,
   * \e lon = 0.  %Geocentric coordinates are also known as earth centered,
   * earth fixed (ECEF) coordinates.
   *
   * The conversion from geographic to geocentric coordinates is
   * straightforward.  For the reverse transformation we use
   * - H. Vermeille,
   *   <a href="http://dx.doi.org/10.1007/s00190-002-0273-6"> Direct
   *   transformation from geocentric coordinates to geodetic coordinates</a>,
   *   J. Geodesy 76, 451--454 (2002).
   * .
   * Several changes have been made to ensure that the method returns accurate
   * results for all finite inputs (even if \e h is infinite).  The changes are
   * described in Appendix B of
   * - C. F. F. Karney,
   *   <a href="http://arxiv.org/abs/1102.1215v1">Geodesics
   *   on an ellipsoid of revolution</a>,
   *   Feb. 2011;
   *   preprint
   *   <a href="http://arxiv.org/abs/1102.1215v1">arxiv:1102.1215v1</a>.
   * .
   * See \ref geocentric for more information.
   *
   * The errors in these routines are close to round-off.  Specifically, for
   * points within 5000 km of the surface of the ellipsoid (either inside or
   * outside the ellipsoid), the error is bounded by 7 nm (7 nanometers) for
   * the WGS84 ellipsoid.  See \ref geocentric for further information on the
   * errors.
   *
   * C# Example:
   * \include example-Geocentric.cs
   * Managed C++ Example:
   * \include example-Geocentric.cpp
   * Visual Basic Example:
   * \include example-Geocentric.vb
   *
   * <B>INTERFACE DIFFERENCES:</B><BR>
   * A default constructor is provided that assumes WGS84 parameters.
   *
   * The MajorRadius and Flattening functions are implemented as properties.
   *
   * The Forward and Reverse functions return rotation matrices as 2D,
   * 3 &times; 3 arrays rather than vectors.
   **********************************************************************/
    public ref class Geocentric
    {
    private:
        // pointer to the unmanaged GeographicLib::Geocentric
        const GeographicLib::Geocentric* m_pGeocentric;

        // The finalizer frees unmanaged memory when the object is destroyed.
        !Geocentric();
    public:
        /**
         * Constructor for a ellipsoid with
         *
         * @param[in] a equatorial radius (meters).
         * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
         *   Negative \e f gives a prolate ellipsoid.  If \e f > 1, set flattening
         *   to 1/\e f.
         * @exception GeographicErr if \e a or (1 &minus; \e f ) \e a is not
         *   positive.
         **********************************************************************/
        Geocentric(double a, double f);

        /**
         * A default constructor which assumes WGS84.
         **********************************************************************/
        Geocentric();

        /**
         * A constructor that is initialized from an unmanaged
         * GeographicLib::Geocentric.  For internal use only.
         * @param[in] g An existing GeographicLib::Geocentric.
         **********************************************************************/
        Geocentric( const GeographicLib::Geocentric& g );

        /**
         * The destructor calls the finalizer.
         **********************************************************************/
        ~Geocentric()
        { this->!Geocentric(); }

        /**
         * Convert from geodetic to geocentric coordinates.
         *
         * @param[in] lat latitude of point (degrees).
         * @param[in] lon longitude of point (degrees).
         * @param[in] h height of point above the ellipsoid (meters).
         * @param[out] X geocentric coordinate (meters).
         * @param[out] Y geocentric coordinate (meters).
         * @param[out] Z geocentric coordinate (meters).
         *
         * \e lat should be in the range [&minus;90&deg;, 90&deg;]; \e lon
         * should be in the range [&minus;540&deg;, 540&deg;).
         **********************************************************************/
        void Forward(double lat, double lon, double h,
            [System::Runtime::InteropServices::Out] double% X,
            [System::Runtime::InteropServices::Out] double% Y,
            [System::Runtime::InteropServices::Out] double% Z);

        /**
         * Convert from geodetic to geocentric coordinates and return rotation
         * matrix.
         *
         * @param[in] lat latitude of point (degrees).
         * @param[in] lon longitude of point (degrees).
         * @param[in] h height of point above the ellipsoid (meters).
         * @param[out] X geocentric coordinate (meters).
         * @param[out] Y geocentric coordinate (meters).
         * @param[out] Z geocentric coordinate (meters).
         * @param[out] M a 3 &times; 3 rotation matrix.
         *
         * Let \e v be a unit vector located at (\e lat, \e lon, \e h).  We can
         * express \e v as \e column vectors in one of two ways
         * - in east, north, up coordinates (where the components are relative to a
         *   local coordinate system at (\e lat, \e lon, \e h)); call this
         *   representation \e v1.
         * - in geocentric \e X, \e Y, \e Z coordinates; call this representation
         *   \e v0.
         * .
         * Then we have \e v0 = \e M &sdot; \e v1.
         **********************************************************************/
        void Forward(double lat, double lon, double h,
            [System::Runtime::InteropServices::Out] double% X,
            [System::Runtime::InteropServices::Out] double% Y,
            [System::Runtime::InteropServices::Out] double% Z,
            [System::Runtime::InteropServices::Out] array<double,2>^% M);

        /**
         * Convert from geocentric to geodetic to coordinates.
         *
         * @param[in] X geocentric coordinate (meters).
         * @param[in] Y geocentric coordinate (meters).
         * @param[in] Z geocentric coordinate (meters).
         * @param[out] lat latitude of point (degrees).
         * @param[out] lon longitude of point (degrees).
         * @param[out] h height of point above the ellipsoid (meters).
         *
         * In general there are multiple solutions and the result which maximizes
         * \e h is returned.  If there are still multiple solutions with different
         * latitudes (applies only if \e Z = 0), then the solution with \e lat > 0
         * is returned.  If there are still multiple solutions with different
         * longitudes (applies only if \e X = \e Y = 0) then \e lon = 0 is
         * returned.  The value of \e h returned satisfies \e h &ge; &minus; \e a
         * (1 &minus; <i>e</i><sup>2</sup>) / sqrt(1 &minus; <i>e</i><sup>2</sup>
         * sin<sup>2</sup>\e lat).  The value of \e lon returned is in the range
         * [&minus;180&deg;, 180&deg;).
         **********************************************************************/
        void Reverse(double X, double Y, double Z,
            [System::Runtime::InteropServices::Out] double% lat,
            [System::Runtime::InteropServices::Out] double% lon,
            [System::Runtime::InteropServices::Out] double% h);

        /**
         * Convert from geocentric to geodetic to coordinates.
         *
         * @param[in] X geocentric coordinate (meters).
         * @param[in] Y geocentric coordinate (meters).
         * @param[in] Z geocentric coordinate (meters).
         * @param[out] lat latitude of point (degrees).
         * @param[out] lon longitude of point (degrees).
         * @param[out] h height of point above the ellipsoid (meters).
         * @param[out] M a 3 &times; 3 rotation matrix.
         *
         * Let \e v be a unit vector located at (\e lat, \e lon, \e h).  We can
         * express \e v as \e column vectors in one of two ways
         * - in east, north, up coordinates (where the components are relative to a
         *   local coordinate system at (\e lat, \e lon, \e h)); call this
         *   representation \e v1.
         * - in geocentric \e X, \e Y, \e Z coordinates; call this representation
         *   \e v0.
         * .
         * Then we have \e v1 = \e M<sup>T</sup> &sdot; \e v0, where \e
         * M<sup>T</sup> is the transpose of \e M.
         **********************************************************************/
        void Reverse(double X, double Y, double Z,
            [System::Runtime::InteropServices::Out] double% lat,
            [System::Runtime::InteropServices::Out] double% lon,
            [System::Runtime::InteropServices::Out] double% h,
            [System::Runtime::InteropServices::Out] array<double,2>^% M);

        /** \name Inspector functions
         **********************************************************************/
        ///@{
        /**
         * @return a pointer to the unmanaged GeographicLib::Geocentric.
         **********************************************************************/
        System::IntPtr^ GetUnmanaged();

        /**
         * @return \e a the equatorial radius of the ellipsoid (meters).  This is
         *   the value used in the constructor.
         **********************************************************************/
        property double MajorRadius { double get(); }

        /**
         * @return \e f the  flattening of the ellipsoid.  This is the
         *   value used in the constructor.
         **********************************************************************/
        property double Flattening { double get(); }
        ///@}
    };
} // namespace NETGeographicLib