File: LocalCartesian.h

package info (click to toggle)
geographiclib 1.37-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 9,688 kB
  • ctags: 4,871
  • sloc: cpp: 31,440; sh: 11,632; cs: 9,411; ansic: 1,428; java: 1,333; python: 1,131; makefile: 758; xml: 381; pascal: 30
file content (250 lines) | stat: -rw-r--r-- 11,446 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#pragma once
/**
 * \file NETGeographicLib/LocalCartesian.h
 * \brief Header for NETGeographicLib::LocalCartesian class
 *
 * NETGeographicLib is copyright (c) Scott Heiman (2013)
 * GeographicLib is Copyright (c) Charles Karney (2010-2012)
 * <charles@karney.com> and licensed under the MIT/X11 License.
 * For more information, see
 * http://geographiclib.sourceforge.net/
 **********************************************************************/

namespace NETGeographicLib
{
    ref class Geocentric;
  /**
   * \brief .NET wrapper for GeographicLib::LocalCartesian.
   *
   * This class allows .NET applications to access GeographicLib::LocalCartesian.
   *
   * Convert between geodetic coordinates latitude = \e lat, longitude = \e
   * lon, height = \e h (measured vertically from the surface of the ellipsoid)
   * to local cartesian coordinates (\e x, \e y, \e z).  The origin of local
   * cartesian coordinate system is at \e lat = \e lat0, \e lon = \e lon0, \e h
   * = \e h0. The \e z axis is normal to the ellipsoid; the \e y axis points
   * due north.  The plane \e z = - \e h0 is tangent to the ellipsoid.
   *
   * The conversions all take place via geocentric coordinates using a
   * Geocentric object.
   *
   * C# Example:
   * \include example-LocalCartesian.cs
   * Managed C++ Example:
   * \include example-LocalCartesian.cpp
   * Visual Basic Example:
   * \include example-LocalCartesian.vb
   *
   * <B>INTERFACE DIFFERENCES:</B><BR>
   * Constructors have been provided that assume WGS84 parameters.
   *
   * The following functions are implemented as properties:
   * LatitudeOrigin, LongitudeOrigin, HeightOrigin, MajorRadius,
   * and Flattening.
   *
   * The rotation matrices returned by the Forward and Reverse functions
   * are 2D, 3 &times; 3 arrays rather than vectors.
   **********************************************************************/
    public ref class LocalCartesian
    {
        private:
        // the pointer to the GeographicLib::LocalCartesian.
        GeographicLib::LocalCartesian* m_pLocalCartesian;

        // the finalizer frees the unmanaged memory when the object is destroyed.
        !LocalCartesian(void);
    public:

        /**
         * Constructor setting the origin.
         *
         * @param[in] lat0 latitude at origin (degrees).
         * @param[in] lon0 longitude at origin (degrees).
         * @param[in] h0 height above ellipsoid at origin (meters); default 0.
         * @param[in] earth Geocentric object for the transformation; default
         *   Geocentric::WGS84.
         *
         * \e lat0 should be in the range [&minus;90&deg;, 90&deg;]; \e
         * lon0 should be in the range [&minus;540&deg;, 540&deg;).
         **********************************************************************/
        LocalCartesian(double lat0, double lon0, double h0,
                       Geocentric^ earth );

        /**
         * Constructor setting the origin and assuming a WGS84 ellipsoid.
         *
         * @param[in] lat0 latitude at origin (degrees).
         * @param[in] lon0 longitude at origin (degrees).
         * @param[in] h0 height above ellipsoid at origin (meters); default 0.
         *
         * \e lat0 should be in the range [&minus;90&deg;, 90&deg;]; \e
         * lon0 should be in the range [&minus;540&deg;, 540&deg;).
         **********************************************************************/
        LocalCartesian(double lat0, double lon0, double h0 );

        /**
         * Constructor that uses the provided ellipsoid.
         *
         * @param[in] earth Geocentric object for the transformation; default
         *   Geocentric::WGS84.
         *
         * Sets \e lat0 = 0, \e lon0 = 0, \e h0 = 0.
         **********************************************************************/
        LocalCartesian(Geocentric^ earth);

        /**
         * The default constructor assumes the WGS84 ellipsoid.
         *
         * Sets \e lat0 = 0, \e lon0 = 0, \e h0 = 0.
         **********************************************************************/
        LocalCartesian();

        /**
         * The destructor calls the finalizer.
         **********************************************************************/
        ~LocalCartesian()
        { this->!LocalCartesian(); }

        /**
         * Reset the origin.
         *
         * @param[in] lat0 latitude at origin (degrees).
         * @param[in] lon0 longitude at origin (degrees).
         * @param[in] h0 height above ellipsoid at origin (meters); default 0.
         *
         * \e lat0 should be in the range [&minus;90&deg;, 90&deg;]; \e
         * lon0 should be in the range [&minus;540&deg;, 540&deg;).
         **********************************************************************/
        void Reset(double lat0, double lon0, double h0 );

        /**
         * Convert from geodetic to local cartesian coordinates.
         *
         * @param[in] lat latitude of point (degrees).
         * @param[in] lon longitude of point (degrees).
         * @param[in] h height of point above the ellipsoid (meters).
         * @param[out] x local cartesian coordinate (meters).
         * @param[out] y local cartesian coordinate (meters).
         * @param[out] z local cartesian coordinate (meters).
         *
         * \e lat should be in the range [&minus;90&deg;, 90&deg;]; \e lon
         * should be in the range [&minus;540&deg;, 540&deg;).
         **********************************************************************/
        void Forward(double lat, double lon, double h,
            [System::Runtime::InteropServices::Out] double% x,
            [System::Runtime::InteropServices::Out] double% y,
            [System::Runtime::InteropServices::Out] double% z);

        /**
         * Convert from geodetic to local cartesian coordinates and return rotation
         * matrix.
         *
         * @param[in] lat latitude of point (degrees).
         * @param[in] lon longitude of point (degrees).
         * @param[in] h height of point above the ellipsoid (meters).
         * @param[out] x local cartesian coordinate (meters).
         * @param[out] y local cartesian coordinate (meters).
         * @param[out] z local cartesian coordinate (meters).
         * @param[out] M a 3 &times; 3 rotation matrix.
         *
         * \e lat should be in the range [&minus;90&deg;, 90&deg;]; \e lon
         * should be in the range [&minus;540&deg;, 540&deg;).
         *
         * Let \e v be a unit vector located at (\e lat, \e lon, \e h).  We can
         * express \e v as \e column vectors in one of two ways
         * - in east, north, up coordinates (where the components are relative to a
         *   local coordinate system at (\e lat, \e lon, \e h)); call this
         *   representation \e v1.
         * - in \e x, \e y, \e z coordinates (where the components are relative to
         *   the local coordinate system at (\e lat0, \e lon0, \e h0)); call this
         *   representation \e v0.
         * .
         * Then we have \e v0 = \e M &sdot; \e v1.
         **********************************************************************/
        void Forward(double lat, double lon, double h,
            [System::Runtime::InteropServices::Out] double% x,
            [System::Runtime::InteropServices::Out] double% y,
            [System::Runtime::InteropServices::Out] double% z,
            [System::Runtime::InteropServices::Out] array<double,2>^% M);

        /**
         * Convert from local cartesian to geodetic coordinates.
         *
         * @param[in] x local cartesian coordinate (meters).
         * @param[in] y local cartesian coordinate (meters).
         * @param[in] z local cartesian coordinate (meters).
         * @param[out] lat latitude of point (degrees).
         * @param[out] lon longitude of point (degrees).
         * @param[out] h height of point above the ellipsoid (meters).
         *
         * The value of \e lon returned is in the range [&minus;180&deg;,
         * 180&deg;).
         **********************************************************************/
        void Reverse(double x, double y, double z,
            [System::Runtime::InteropServices::Out] double% lat,
            [System::Runtime::InteropServices::Out] double% lon,
            [System::Runtime::InteropServices::Out] double% h);

        /**
         * Convert from local cartesian to geodetic coordinates and return rotation
         * matrix.
         *
         * @param[in] x local cartesian coordinate (meters).
         * @param[in] y local cartesian coordinate (meters).
         * @param[in] z local cartesian coordinate (meters).
         * @param[out] lat latitude of point (degrees).
         * @param[out] lon longitude of point (degrees).
         * @param[out] h height of point above the ellipsoid (meters).
         * @param[out] M a 3 &times; 3 rotation matrix.
         *
         * Let \e v be a unit vector located at (\e lat, \e lon, \e h).  We can
         * express \e v as \e column vectors in one of two ways
         * - in east, north, up coordinates (where the components are relative to a
         *   local coordinate system at (\e lat, \e lon, \e h)); call this
         *   representation \e v1.
         * - in \e x, \e y, \e z coordinates (where the components are relative to
         *   the local coordinate system at (\e lat0, \e lon0, \e h0)); call this
         *   representation \e v0.
         * .
         * Then we have \e v1 = \e M<sup>T</sup> &sdot; \e v0, where \e
         * M<sup>T</sup> is the transpose of \e M.
         **********************************************************************/
        void Reverse(double x, double y, double z,
            [System::Runtime::InteropServices::Out] double% lat,
            [System::Runtime::InteropServices::Out] double% lon,
            [System::Runtime::InteropServices::Out] double% h,
            [System::Runtime::InteropServices::Out] array<double,2>^% M);

        /** \name Inspector functions
         **********************************************************************/
        ///@{
        /**
         * @return latitude of the origin (degrees).
         **********************************************************************/
        property double LatitudeOrigin { double get(); }

        /**
         * @return longitude of the origin (degrees).
         **********************************************************************/
        property double LongitudeOrigin { double get(); }

        /**
         * @return height of the origin (meters).
         **********************************************************************/
        property double HeightOrigin { double get(); }

        /**
         * @return \e a the equatorial radius of the ellipsoid (meters).  This is
         *   the value of \e a inherited from the Geocentric object used in the
         *   constructor.
         **********************************************************************/
        property double MajorRadius { double get(); }

        /**
         * @return \e f the flattening of the ellipsoid.  This is the value
         *   inherited from the Geocentric object used in the constructor.
         **********************************************************************/
        property double Flattening { double get(); }
        ///@}
    };
} // namespace NETGeographicLib