1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
#pragma once
/**
* \file NETGeographicLib/PolygonArea.h
* \brief Header for NETGeographicLib::PolygonArea class
*
* NETGeographicLib is copyright (c) Scott Heiman (2013)
* GeographicLib is Copyright (c) Charles Karney (2010-2012)
* <charles@karney.com> and licensed under the MIT/X11 License.
* For more information, see
* http://geographiclib.sourceforge.net/
**********************************************************************/
namespace NETGeographicLib
{
ref class Geodesic;
/**
* \brief .NET wrapper for GeographicLib::PolygonArea and PolygonAreaExact.
*
* This class allows .NET applications to access GeographicLib::PolygonArea.
*
* This computes the area of a geodesic polygon using the method given
* Section 6 of
* - C. F. F. Karney,
* <a href="http://dx.doi.org/10.1007/s00190-012-0578-z">
* Algorithms for geodesics</a>,
* J. Geodesy <b>87</b>, 43--55 (2013);
* DOI: <a href="http://dx.doi.org/10.1007/s00190-012-0578-z">
* 10.1007/s00190-012-0578-z</a>;
* addenda: <a href="http://geographiclib.sf.net/geod-addenda.html">
* geod-addenda.html</a>.
*
* This class lets you add vertices one at a time to the polygon. The area
* and perimeter are accumulated in two times the standard floating point
* precision to guard against the loss of accuracy with many-sided polygons.
* At any point you can ask for the perimeter and area so far. There's an
* option to treat the points as defining a polyline instead of a polygon; in
* that case, only the perimeter is computed.
*
* C# Example:
* \include example-PolygonArea.cs
* Managed C++ Example:
* \include example-PolygonArea.cpp
* Visual Basic Example:
* \include example-PolygonArea.vb
*
* <B>INTERFACE DIFFERENCES:</B><BR>
* The MajorRadius and Flattening functions are implemented as properties.
**********************************************************************/
public ref class PolygonArea
{
private:
// a pointer to the unmanaged GeographicLib::PolygonArea
GeographicLib::PolygonArea* m_pPolygonArea;
// the finalize frees the unmanaged memory when the object is destroyed.
!PolygonArea(void);
public:
/**
* Constructor for PolygonArea.
*
* @param[in] earth the Geodesic object to use for geodesic calculations.
* @param[in] polyline if true that treat the points as defining a polyline
* instead of a polygon.
**********************************************************************/
PolygonArea(Geodesic^ earth, bool polyline );
/**
* Constructor for PolygonArea that assumes a WGS84 ellipsoid.
*
* @param[in] polyline if true that treat the points as defining a polyline
* instead of a polygon.
**********************************************************************/
PolygonArea(const bool polyline );
/**
* The destructor calls the finalizer.
**********************************************************************/
~PolygonArea()
{ this->!PolygonArea(); }
/**
* Clear PolygonArea, allowing a new polygon to be started.
**********************************************************************/
void Clear();
/**
* Add a point to the polygon or polyline.
*
* @param[in] lat the latitude of the point (degrees).
* @param[in] lon the longitude of the point (degrees).
*
* \e lat should be in the range [−90°, 90°] and \e
* lon should be in the range [−540°, 540°).
**********************************************************************/
void AddPoint(double lat, double lon);
/**
* Add an edge to the polygon or polyline.
*
* @param[in] azi azimuth at current point (degrees).
* @param[in] s distance from current point to next point (meters).
*
* \e azi should be in the range [−540°, 540°). This does
* nothing if no points have been added yet. Use PolygonArea::CurrentPoint
* to determine the position of the new vertex.
**********************************************************************/
void AddEdge(double azi, double s);
/**
* Return the results so far.
*
* @param[in] reverse if true then clockwise (instead of counter-clockwise)
* traversal counts as a positive area.
* @param[in] sign if true then return a signed result for the area if
* the polygon is traversed in the "wrong" direction instead of returning
* the area for the rest of the earth.
* @param[out] perimeter the perimeter of the polygon or length of the
* polyline (meters).
* @param[out] area the area of the polygon (meters<sup>2</sup>); only set
* if \e polyline is false in the constructor.
* @return the number of points.
**********************************************************************/
unsigned Compute(bool reverse, bool sign,
[System::Runtime::InteropServices::Out] double% perimeter,
[System::Runtime::InteropServices::Out] double% area);
/**
* Return the results assuming a tentative final test point is added;
* however, the data for the test point is not saved. This lets you report
* a running result for the perimeter and area as the user moves the mouse
* cursor. Ordinary floating point arithmetic is used to accumulate the
* data for the test point; thus the area and perimeter returned are less
* accurate than if PolygonArea::AddPoint and PolygonArea::Compute are
* used.
*
* @param[in] lat the latitude of the test point (degrees).
* @param[in] lon the longitude of the test point (degrees).
* @param[in] reverse if true then clockwise (instead of counter-clockwise)
* traversal counts as a positive area.
* @param[in] sign if true then return a signed result for the area if
* the polygon is traversed in the "wrong" direction instead of returning
* the area for the rest of the earth.
* @param[out] perimeter the approximate perimeter of the polygon or length
* of the polyline (meters).
* @param[out] area the approximate area of the polygon
* (meters<sup>2</sup>); only set if polyline is false in the
* constructor.
* @return the number of points.
*
* \e lat should be in the range [−90°, 90°] and \e
* lon should be in the range [−540°, 540°).
**********************************************************************/
unsigned TestPoint(double lat, double lon, bool reverse, bool sign,
[System::Runtime::InteropServices::Out] double% perimeter,
[System::Runtime::InteropServices::Out] double% area);
/**
* Return the results assuming a tentative final test point is added via an
* azimuth and distance; however, the data for the test point is not saved.
* This lets you report a running result for the perimeter and area as the
* user moves the mouse cursor. Ordinary floating point arithmetic is used
* to accumulate the data for the test point; thus the area and perimeter
* returned are less accurate than if PolygonArea::AddEdge and
* PolygonArea::Compute are used.
*
* @param[in] azi azimuth at current point (degrees).
* @param[in] s distance from current point to final test point (meters).
* @param[in] reverse if true then clockwise (instead of counter-clockwise)
* traversal counts as a positive area.
* @param[in] sign if true then return a signed result for the area if
* the polygon is traversed in the "wrong" direction instead of returning
* the area for the rest of the earth.
* @param[out] perimeter the approximate perimeter of the polygon or length
* of the polyline (meters).
* @param[out] area the approximate area of the polygon
* (meters<sup>2</sup>); only set if polyline is false in the
* constructor.
* @return the number of points.
*
* \e azi should be in the range [−540°, 540°).
**********************************************************************/
unsigned TestEdge(double azi, double s, bool reverse, bool sign,
[System::Runtime::InteropServices::Out] double% perimeter,
[System::Runtime::InteropServices::Out] double% area);
/** \name Inspector functions
**********************************************************************/
///@{
/**
* @return \e a the equatorial radius of the ellipsoid (meters). This is
* the value inherited from the Geodesic object used in the constructor.
**********************************************************************/
property double MajorRadius { double get(); }
/**
* @return \e f the flattening of the ellipsoid. This is the value
* inherited from the Geodesic object used in the constructor.
**********************************************************************/
property double Flattening { double get(); }
/**
* Report the previous vertex added to the polygon or polyline.
*
* @param[out] lat the latitude of the point (degrees).
* @param[out] lon the longitude of the point (degrees).
*
* If no points have been added, then NaNs are returned. Otherwise, \e lon
* will be in the range [−180°, 180°).
**********************************************************************/
void CurrentPoint([System::Runtime::InteropServices::Out] double% lat,
[System::Runtime::InteropServices::Out] double% lon);
///@}
};
//*************************************************************************
// PolygonAreaExact
//*************************************************************************
ref class GeodesicExact;
public ref class PolygonAreaExact
{
private:
// a pointer to the unmanaged GeographicLib::PolygonArea
GeographicLib::PolygonAreaExact* m_pPolygonArea;
// the finalize frees the unmanaged memory when the object is destroyed.
!PolygonAreaExact(void);
public:
/**
* Constructor for PolygonArea.
*
* @param[in] earth the Geodesic object to use for geodesic calculations.
* @param[in] polyline if true that treat the points as defining a polyline
* instead of a polygon.
**********************************************************************/
PolygonAreaExact(GeodesicExact^ earth, bool polyline );
/**
* Constructor for PolygonArea that assumes a WGS84 ellipsoid.
*
* @param[in] polyline if true that treat the points as defining a polyline
* instead of a polygon.
**********************************************************************/
PolygonAreaExact(const bool polyline );
/**
* The destructor calls the finalizer.
**********************************************************************/
~PolygonAreaExact()
{ this->!PolygonAreaExact(); }
/**
* Clear PolygonArea, allowing a new polygon to be started.
**********************************************************************/
void Clear();
/**
* Add a point to the polygon or polyline.
*
* @param[in] lat the latitude of the point (degrees).
* @param[in] lon the longitude of the point (degrees).
*
* \e lat should be in the range [−90°, 90°] and \e
* lon should be in the range [−540°, 540°).
**********************************************************************/
void AddPoint(double lat, double lon);
/**
* Add an edge to the polygon or polyline.
*
* @param[in] azi azimuth at current point (degrees).
* @param[in] s distance from current point to next point (meters).
*
* \e azi should be in the range [−540°, 540°). This does
* nothing if no points have been added yet. Use PolygonArea::CurrentPoint
* to determine the position of the new vertex.
**********************************************************************/
void AddEdge(double azi, double s);
/**
* Return the results so far.
*
* @param[in] reverse if true then clockwise (instead of counter-clockwise)
* traversal counts as a positive area.
* @param[in] sign if true then return a signed result for the area if
* the polygon is traversed in the "wrong" direction instead of returning
* the area for the rest of the earth.
* @param[out] perimeter the perimeter of the polygon or length of the
* polyline (meters).
* @param[out] area the area of the polygon (meters<sup>2</sup>); only set
* if \e polyline is false in the constructor.
* @return the number of points.
**********************************************************************/
unsigned Compute(bool reverse, bool sign,
[System::Runtime::InteropServices::Out] double% perimeter,
[System::Runtime::InteropServices::Out] double% area);
/**
* Return the results assuming a tentative final test point is added;
* however, the data for the test point is not saved. This lets you report
* a running result for the perimeter and area as the user moves the mouse
* cursor. Ordinary floating point arithmetic is used to accumulate the
* data for the test point; thus the area and perimeter returned are less
* accurate than if PolygonArea::AddPoint and PolygonArea::Compute are
* used.
*
* @param[in] lat the latitude of the test point (degrees).
* @param[in] lon the longitude of the test point (degrees).
* @param[in] reverse if true then clockwise (instead of counter-clockwise)
* traversal counts as a positive area.
* @param[in] sign if true then return a signed result for the area if
* the polygon is traversed in the "wrong" direction instead of returning
* the area for the rest of the earth.
* @param[out] perimeter the approximate perimeter of the polygon or length
* of the polyline (meters).
* @param[out] area the approximate area of the polygon
* (meters<sup>2</sup>); only set if polyline is false in the
* constructor.
* @return the number of points.
*
* \e lat should be in the range [−90°, 90°] and \e
* lon should be in the range [−540°, 540°).
**********************************************************************/
unsigned TestPoint(double lat, double lon, bool reverse, bool sign,
[System::Runtime::InteropServices::Out] double% perimeter,
[System::Runtime::InteropServices::Out] double% area);
/**
* Return the results assuming a tentative final test point is added via an
* azimuth and distance; however, the data for the test point is not saved.
* This lets you report a running result for the perimeter and area as the
* user moves the mouse cursor. Ordinary floating point arithmetic is used
* to accumulate the data for the test point; thus the area and perimeter
* returned are less accurate than if PolygonArea::AddEdge and
* PolygonArea::Compute are used.
*
* @param[in] azi azimuth at current point (degrees).
* @param[in] s distance from current point to final test point (meters).
* @param[in] reverse if true then clockwise (instead of counter-clockwise)
* traversal counts as a positive area.
* @param[in] sign if true then return a signed result for the area if
* the polygon is traversed in the "wrong" direction instead of returning
* the area for the rest of the earth.
* @param[out] perimeter the approximate perimeter of the polygon or length
* of the polyline (meters).
* @param[out] area the approximate area of the polygon
* (meters<sup>2</sup>); only set if polyline is false in the
* constructor.
* @return the number of points.
*
* \e azi should be in the range [−540°, 540°).
**********************************************************************/
unsigned TestEdge(double azi, double s, bool reverse, bool sign,
[System::Runtime::InteropServices::Out] double% perimeter,
[System::Runtime::InteropServices::Out] double% area);
/** \name Inspector functions
**********************************************************************/
///@{
/**
* @return \e a the equatorial radius of the ellipsoid (meters). This is
* the value inherited from the Geodesic object used in the constructor.
**********************************************************************/
property double MajorRadius { double get(); }
/**
* @return \e f the flattening of the ellipsoid. This is the value
* inherited from the Geodesic object used in the constructor.
**********************************************************************/
property double Flattening { double get(); }
/**
* Report the previous vertex added to the polygon or polyline.
*
* @param[out] lat the latitude of the point (degrees).
* @param[out] lon the longitude of the point (degrees).
*
* If no points have been added, then NaNs are returned. Otherwise, \e lon
* will be in the range [−180°, 180°).
**********************************************************************/
void CurrentPoint([System::Runtime::InteropServices::Out] double% lat,
[System::Runtime::InteropServices::Out] double% lon);
///@}
};
} // namespace NETGeographicLib
|